#include "stencil_definition.sdh" Vector value(in VectorField uu) { return (Vector){value(uu.x), value(uu.y), value(uu.z)}; } #if LUPWD Scalar upwd_der6(in VectorField uu, in ScalarField lnrho) { Scalar uux = fabs(value(uu).x); Scalar uuy = fabs(value(uu).y); Scalar uuz = fabs(value(uu).z); return (Scalar){uux * der6x_upwd(lnrho) + uuy * der6y_upwd(lnrho) + uuz * der6z_upwd(lnrho)}; } #endif Matrix gradients(in VectorField uu) { return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)}; } Scalar continuity(in VectorField uu, in ScalarField lnrho) { return -dot(value(uu), gradient(lnrho)) #if LUPWD // This is a corrective hyperdiffusion term for upwinding. + upwd_der6(uu, lnrho) #endif - divergence(uu); } #if LENTROPY Vector momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa) { const Matrix S = stress_tensor(uu); const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound + (AC_gamma - 1) * (value(lnrho) - AC_lnrho0)); const Vector j = (Scalar(1.) / AC_mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density const Vector B = curl(aa); // TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD? const Scalar inv_rho = Scalar(1.) / exp(value(lnrho)); // Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\) // \1 const Vector mom = -mul(gradients(uu), value(uu)) - cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) + inv_rho * cross(j, B) + AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) + Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu); return mom; } #elif LTEMPERATURE Vector momentum(in VectorField uu, in ScalarField lnrho, in ScalarField tt) { Vector mom; const Matrix S = stress_tensor(uu); const Vector pressure_term = (AC_cp_sound - AC_cv_sound) * (gradient(tt) + value(tt) * gradient(lnrho)); mom = -mul(gradients(uu), value(uu)) - pressure_term + AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) + Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu); #if LGRAVITY mom = mom - (Vector){0, 0, -10.0}; #endif return mom; } #else Vector momentum(in VectorField uu, in ScalarField lnrho) { Vector mom; const Matrix S = stress_tensor(uu); // Isothermal: we have constant speed of sound mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) + AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) + Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu); #if LGRAVITY mom = mom - (Vector){0, 0, -10.0}; #endif return mom; } #endif Vector induction(in VectorField uu, in VectorField aa) { // Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla // x A)) in order to avoid taking the first derivative twice (did the math, // yes this actually works. See pg.28 in arXiv:astro-ph/0109497) // u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ]) const Vector B = curl(aa); const Vector grad_div = gradient_of_divergence(aa); const Vector lap = laplace_vec(aa); // Note, AC_mu0 is cancelled out const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap); return ind; } #if LENTROPY Scalar lnT(in ScalarField ss, in ScalarField lnrho) { const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound + (AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0); return lnT; } // Nabla dot (K nabla T) / (rho T) Scalar heat_conduction(in ScalarField ss, in ScalarField lnrho) { const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound; const Vector grad_ln_chi = -gradient(lnrho); const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) + (AC_gamma - AcReal(1.)) * laplace(lnrho); const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) + (AC_gamma - AcReal(1.)) * gradient(lnrho); const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) + grad_ln_chi; const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound); return AC_cp_sound * chi * (first_term + dot(second_term, third_term)); } Scalar heating(const int i, const int j, const int k) { return 1; } Scalar entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) { const Matrix S = stress_tensor(uu); const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho))); const Vector j = (Scalar(1.) / AC_mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) + Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S) + AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu); return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho); } #endif #if LTEMPERATURE Scalar heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt) { const Matrix S = stress_tensor(uu); const Scalar heat_diffusivity_k = 0.0008; // 8e-4; return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) + heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) + AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) - (AC_gamma - 1) * value(tt) * divergence(uu); } #endif #if LFORCING Vector simple_vortex_forcing(Vector a, Vector b, Scalar magnitude) { return magnitude * cross(normalized(b - a), (Vector){0, 0, 1}); // Vortex } Vector simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude) { return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow } // The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable // helicity Vector helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi) { // JP: This looks wrong: // 1) Should it be AC_dsx * AC_nx instead of AC_dsx * AC_ny? // 2) Should you also use globalGrid.n instead of the local n? // MV: You are rigth. Made a quickfix. I did not see the error because multigpu is split // in z direction not y direction. // 3) Also final point: can we do this with vectors/quaternions instead? // Tringonometric functions are much more expensive and inaccurate/ // MV: Good idea. No an immediate priority. // Fun related article: // https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/ xx.x = xx.x * (2.0 * M_PI / (AC_dsx * globalGridN.x)); xx.y = xx.y * (2.0 * M_PI / (AC_dsy * globalGridN.y)); xx.z = xx.z * (2.0 * M_PI / (AC_dsz * globalGridN.z)); Scalar cos_phi = cos(phi); Scalar sin_phi = sin(phi); Scalar cos_k_dot_x = cos(dot(k_force, xx)); Scalar sin_k_dot_x = sin(dot(k_force, xx)); // Phase affect only the x-component // Scalar real_comp = cos_k_dot_x; // Scalar imag_comp = sin_k_dot_x; Scalar real_comp_phase = cos_k_dot_x * cos_phi - sin_k_dot_x * sin_phi; Scalar imag_comp_phase = cos_k_dot_x * sin_phi + sin_k_dot_x * cos_phi; Vector force = (Vector){ff_re.x * real_comp_phase - ff_im.x * imag_comp_phase, ff_re.y * real_comp_phase - ff_im.y * imag_comp_phase, ff_re.z * real_comp_phase - ff_im.z * imag_comp_phase}; return force; } Vector forcing_OLD(int3 globalVertexIdx, Scalar dt) { Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx, globalGridN.y * AC_dsy, globalGridN.z * AC_dsz}; // source (origin) Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx, (globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy, (globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index) const Scalar cs2 = AC_cs2_sound; const Scalar cs = sqrt(cs2); // Placeholders until determined properly Scalar magnitude = AC_forcing_magnitude; Scalar phase = AC_forcing_phase; Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez}; Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez}; Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz}; // Determine that forcing funtion type at this point. // Vector force = simple_vortex_forcing(a, xx, magnitude); // Vector force = simple_outward_flow_forcing(a, xx, magnitude); Vector force = helical_forcing(magnitude, k_force, xx, ff_re, ff_im, phase); // Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt const Scalar NN = cs * sqrt(AC_kaver * cs); // MV: Like in the Pencil Code. I don't understandf the logic here. force.x = sqrt(dt) * NN * force.x; force.y = sqrt(dt) * NN * force.y; force.z = sqrt(dt) * NN * force.z; if (is_valid(force)) { return force; } else { return (Vector){0, 0, 0}; } } // PC-style helical forcing with support for profiles Vector forcing(int3 vertexIdx, int3 globalVertexIdx, Scalar dt, ScalarArray profx, ScalarArray profy, ScalarArray profz, ScalarArray profx_hel, ScalarArray profy_hel, ScalarArray profz_hel) { Vector pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx, (globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy, (globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; Complex fx = AC_fact * exp(Complex(0, AC_kk.x * AC_k1_ff * pos.z + AC_phase)); Complex fy = exp(Complex(0, AC_kk.y * AC_k1_ff * pos.y)); Complex fz; if (AC_iforcing_zsym == 0) { fz = exp(Complex(0., AC_kk.z * AC_k1_ff * pos.z)); } else if (AC_iforcing_zsym == 1) { fz = Complex(cos(AC_kk.z * AC_k1_ff * pos.z), 0); } else if (AC_iforcing_zsym == -1) { fz = Complex(sin(AC_kk.z * AC_k1_ff * pos.z), 0); } else { // Failure } Complex fxyz = fx * fy * fz; // TODO recheck indices Scalar force_ampl = profx[vertexIdx.x - NGHOST] * profy[vertexIdx.y] * profz[vertexIdx.z]; Scalar prof_hel_ampl = profx_hel[vertexIdx.x - NGHOST] * profy_hel[vertexIdx.y] * profz_hel[vertexIdx.z]; return force_ampl * AC_fda * (Complex(AC_coef1.x, prof_hel_ampl * AC_coef2.x) * fxyz).x; } #endif // LFORCING // Declare input and output arrays using locations specified in the // array enum in astaroth.h in ScalarField lnrho(VTXBUF_LNRHO); out ScalarField out_lnrho(VTXBUF_LNRHO); in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ); out VectorField out_uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ); #if LMAGNETIC in VectorField aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ); out VectorField out_aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ); #endif #if LENTROPY in ScalarField ss(VTXBUF_ENTROPY); out ScalarField out_ss(VTXBUF_ENTROPY); #endif #if LTEMPERATURE in ScalarField tt(VTXBUF_TEMPERATURE); out ScalarField out_tt(VTXBUF_TEMPERATURE); #endif Kernel void solve() { Scalar dt = AC_dt; out_lnrho = rk3(out_lnrho, lnrho, continuity(uu, lnrho), dt); #if LMAGNETIC out_aa = rk3(out_aa, aa, induction(uu, aa), dt); #endif #if LENTROPY out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt); out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt); #elif LTEMPERATURE out_uu = rk3(out_uu, uu, momentum(uu, lnrho, tt), dt); out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt); #else out_uu = rk3(out_uu, uu, momentum(uu, lnrho), dt); #endif #if LFORCING if (step_number == 2) { out_uu = out_uu + forcing(vertexIdx, globalVertexIdx, dt, AC_profx, AC_profy, AC_profz, AC_profx_hel, AC_profy_hel, AC_profz_hel); } #endif }