#include #include #include #include #include #include #include "timer_hires.h" // From src/common //#define BLOCK_SIZE (100 * 1024 * 1024) // Bytes #define BLOCK_SIZE (256 * 256 * 3 * 8 * 8) /* Findings: - MUST ALWAYS SET DEVICE. Absolutely kills performance if device is not set explicitly - Need to use cudaMalloc for intranode comm for P2P to trigger with MPI - For internode one should use pinned memory (RDMA is staged through pinned, gives full network speed iff pinned) */ static uint8_t* allocHost(const size_t bytes) { uint8_t* arr = malloc(bytes); assert(arr); return arr; } static void freeHost(uint8_t* arr) { free(arr); } static uint8_t* allocDevice(const size_t bytes) { uint8_t* arr; // Standard (20 GiB/s internode, 85 GiB/s intranode) // const cudaError_t retval = cudaMalloc((void**)&arr, bytes); // Unified mem (5 GiB/s internode, 6 GiB/s intranode) // const cudaError_t retval = cudaMallocManaged((void**)&arr, bytes, cudaMemAttachGlobal); // Pinned (40 GiB/s internode, 10 GiB/s intranode) const cudaError_t retval = cudaMallocHost((void**)&arr, bytes); assert(retval == cudaSuccess); return arr; } static void freeDevice(uint8_t* arr) { cudaFree(arr); } static void sendrecv_blocking(uint8_t* src, uint8_t* dst) { int pid, nprocs; MPI_Comm_rank(MPI_COMM_WORLD, &pid); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); int nfront = (pid + 1) % nprocs; int nback = (((pid - 1) % nprocs) + nprocs) % nprocs; if (!pid) { MPI_Status status; MPI_Send(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, MPI_COMM_WORLD); MPI_Recv(dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &status); } else { MPI_Status status; MPI_Recv(dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &status); MPI_Send(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, MPI_COMM_WORLD); } } static void sendrecv_nonblocking(uint8_t* src, uint8_t* dst) { int pid, nprocs; MPI_Comm_rank(MPI_COMM_WORLD, &pid); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); int nfront = (pid + 1) % nprocs; int nback = (((pid - 1) % nprocs) + nprocs) % nprocs; MPI_Request recv_request, send_request; MPI_Irecv(dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &recv_request); MPI_Isend(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, MPI_COMM_WORLD, &send_request); MPI_Status status; MPI_Wait(&recv_request, &status); MPI_Wait(&send_request, &status); } static void sendrecv_twoway(uint8_t* src, uint8_t* dst) { int pid, nprocs; MPI_Comm_rank(MPI_COMM_WORLD, &pid); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); int nfront = (pid + 1) % nprocs; int nback = (((pid - 1) % nprocs) + nprocs) % nprocs; MPI_Status status; MPI_Sendrecv(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &status); } #define PRINT \ if (!pid) \ printf static void measurebw(const char* msg, const size_t bytes, void (*sendrecv)(uint8_t*, uint8_t*), uint8_t* src, uint8_t* dst) { const size_t num_samples = 10; int pid, nprocs; MPI_Comm_rank(MPI_COMM_WORLD, &pid); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); PRINT("%s\n", msg); MPI_Barrier(MPI_COMM_WORLD); PRINT("\tWarming up... "); for (size_t i = 0; i < num_samples / 10; ++i) sendrecv(src, dst); MPI_Barrier(MPI_COMM_WORLD); PRINT("Done\n"); PRINT("\tBandwidth... "); fflush(stdout); Timer t; MPI_Barrier(MPI_COMM_WORLD); timer_reset(&t); MPI_Barrier(MPI_COMM_WORLD); for (size_t i = 0; i < num_samples; ++i) sendrecv(src, dst); MPI_Barrier(MPI_COMM_WORLD); const long double time_elapsed = timer_diff_nsec(t) / 1e9l; // seconds PRINT("%Lg GiB/s\n", num_samples * bytes / time_elapsed / (1024 * 1024 * 1024)); PRINT("\tTransfer time: %Lg ms\n", time_elapsed * 1000); MPI_Barrier(MPI_COMM_WORLD); } int main(void) { // Disable stdout buffering setbuf(stdout, NULL); MPI_Init(NULL, NULL); int pid, nprocs; MPI_Comm_rank(MPI_COMM_WORLD, &pid); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); assert(nprocs >= 2); // Require at least one neighbor int devices_per_node = -1; cudaGetDeviceCount(&devices_per_node); const int device_id = pid % devices_per_node; cudaSetDevice(device_id); printf("Process %d of %d running.\n", pid, nprocs); MPI_Barrier(MPI_COMM_WORLD); PRINT("Block size: %u MiB\n", BLOCK_SIZE / (1024 * 1024)); { uint8_t* src = allocHost(BLOCK_SIZE); uint8_t* dst = allocHost(BLOCK_SIZE); measurebw("Unidirectional bandwidth, blocking (Host)", // 2 * BLOCK_SIZE, sendrecv_blocking, src, dst); measurebw("Bidirectional bandwidth, async (Host)", // 2 * BLOCK_SIZE, sendrecv_nonblocking, src, dst); measurebw("Bidirectional bandwidth, twoway (Host)", // 2 * BLOCK_SIZE, sendrecv_twoway, src, dst); freeHost(src); freeHost(dst); } { uint8_t* src = allocDevice(BLOCK_SIZE); uint8_t* dst = allocDevice(BLOCK_SIZE); measurebw("Unidirectional bandwidth, blocking (Device)", // 2 * BLOCK_SIZE, sendrecv_blocking, src, dst); measurebw("Bidirectional bandwidth, async (Device)", // 2 * BLOCK_SIZE, sendrecv_nonblocking, src, dst); measurebw("Bidirectional bandwidth, twoway (Device)", // 2 * BLOCK_SIZE, sendrecv_twoway, src, dst); freeDevice(src); freeDevice(dst); } MPI_Finalize(); return EXIT_SUCCESS; }