/*
Copyright (C) 2014-2019, Johannes Pekkilae, Miikka Vaeisalae.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see .
*/
#include "memory.h"
#include
#include
#include "src/core/errchk.h"
AcResult
acMeshCreate(const AcMeshInfo info, AcMesh* mesh)
{
mesh->info = info;
const size_t bytes = acVertexBufferSizeBytes(mesh->info);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
mesh->vertex_buffer[w] = malloc(bytes);
ERRCHK_ALWAYS(mesh->vertex_buffer[w]);
}
return AC_SUCCESS;
}
AcResult
acMeshDestroy(AcMesh* mesh)
{
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
free(mesh->vertex_buffer[w]);
return AC_SUCCESS;
}
AcResult
acMeshSet(const AcReal value, AcMesh* mesh)
{
const int n = acVertexBufferSize(mesh->info);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[w][i] = value;
return AC_SUCCESS;
}
static AcReal
randf(void)
{
return (AcReal)rand() / (AcReal)RAND_MAX;
}
AcResult
acMeshRandomize(AcMesh* mesh)
{
const int n = acVertexBufferSize(mesh->info);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[w][i] = randf();
return AC_SUCCESS;
}
AcResult
acMeshApplyPeriodicBounds(AcMesh* mesh)
{
const AcMeshInfo info = mesh->info;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
const int3 start = (int3){0, 0, 0};
const int3 end = (int3){info.int_params[AC_mx], info.int_params[AC_my],
info.int_params[AC_mz]};
const int nx = info.int_params[AC_nx];
const int ny = info.int_params[AC_ny];
const int nz = info.int_params[AC_nz];
const int nx_min = info.int_params[AC_nx_min];
const int ny_min = info.int_params[AC_ny_min];
const int nz_min = info.int_params[AC_nz_min];
// The old kxt was inclusive, but our mx_max is exclusive
const int nx_max = info.int_params[AC_nx_max];
const int ny_max = info.int_params[AC_ny_max];
const int nz_max = info.int_params[AC_nz_max];
for (int k_dst = start.z; k_dst < end.z; ++k_dst) {
for (int j_dst = start.y; j_dst < end.y; ++j_dst) {
for (int i_dst = start.x; i_dst < end.x; ++i_dst) {
// If destination index is inside the computational domain, return since
// the boundary conditions are only applied to the ghost zones
if (i_dst >= nx_min && i_dst < nx_max && j_dst >= ny_min && j_dst < ny_max &&
k_dst >= nz_min && k_dst < nz_max)
continue;
// Find the source index
// Map to nx, ny, nz coordinates
int i_src = i_dst - nx_min;
int j_src = j_dst - ny_min;
int k_src = k_dst - nz_min;
// Translate (s.t. the index is always positive)
i_src += nx;
j_src += ny;
k_src += nz;
// Wrap
i_src %= nx;
j_src %= ny;
k_src %= nz;
// Map to mx, my, mz coordinates
i_src += nx_min;
j_src += ny_min;
k_src += nz_min;
const size_t src_idx = acVertexBufferIdx(i_src, j_src, k_src, info);
const size_t dst_idx = acVertexBufferIdx(i_dst, j_dst, k_dst, info);
ERRCHK(src_idx < acVertexBufferSize(info));
ERRCHK(dst_idx < acVertexBufferSize(info));
mesh->vertex_buffer[w][dst_idx] = mesh->vertex_buffer[w][src_idx];
}
}
}
}
return AC_SUCCESS;
}
AcResult
acMeshClear(AcMesh* mesh)
{
return acMeshSet(0, mesh);
}