
Optimizing Communication for CPU/GPU Nodes
Carl Pearson
March 11 2020

ECE ILLINOIS

Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University
of Illinois Urbana-Champaign

● Advised by Professor Wen-Mei Hwu
● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson
cwpearson
pearson at illinois.edu
https://cwpearson.github.io

2

https://cwpearson.github.io

ECE ILLINOIS

Background

3

Application Acceleration GPU Communication

Comm|Scope
[ICPE ‘19]

[best paper]

Stencil
[IPDPS Wksh. ‘20]

GPU Triangle counting
[HPEC ‘18]

Inverse Scattering
[IPDPS ‘18] Triangle counting

[HPEC ‘19]

FGPA Triangle counting
[HPEC ‘18]

GPU Education

WebGPU
[IPDPS Wksh. ‘16]

RAI
[IPDPS Wksh. ‘17]

Neural Network Course
Material [‘18-’20]

ECE ILLINOIS

Outline

● Research Background
● Benchmarking heterogeneous system communication
● Acceleration of a stencil code
● Future Directions

4

ECE ILLINOIS

SCOPE Benchmarking Framework

GPU benchmarking framework

amd64 and ppc64le

CUDA

- Comm|Scope (Pearson et al. ICPE ‘19 Best Paper)
- TCU|Scope (Dakkak et al. ICS ‘19)

- NCCL|Scope

- CUDNN|Scope (Li et al. ICS’ 19)

University of Illinois / IBM Center for Cognitive

Computing Systems Research (C3SR)

Prof. Wen-Mei Hwu (Illinois)

Jinjun Xiong (IBM T. J. Watson Research)

https://scope.c3sr.com

https://github.com/c3sr/scope

5

ECE ILLINOIS

Comm|Scope

SCOPE plugin: multi-socket

multi-GPU communication

microbenchmarks

amd64 & ppc64le

CUDA

NUMA-aware allocation and pinning

cache control

asynchronous CUDA operations

“Final word” and examples for CUDA

communication benchmarking

Transfer Host Alloc. Device Alloc. Direction

cudaMemcpy pageable (NUMA) cudaMalloc H2D / D2H / bi

cudaMemcpy pinned (NUMA) cudaMalloc H2D / D2H / bi

zero-copy mapped - H2D

zero-copy - cudaMalloc D2D / bi

cudaMemcpy - cudaMalloc D2D / bi

cudaMemcpy (peer) - cudaMalloc D2D / bi

cudaMemcpyPeer - cudaMalloc D2D / bi

cudaMemcpyPeer (peer) - cudaMalloc D2D / bi

demand cudaMallocManaged H2D / D2H / D2D / bi

prefetch cudaMallocManaged H2D / D2H / D2D / bi

Evaluating Characteristics of CUDA Communication Primitives on High-Bandwidth
Interconnects. Pearson et al. ICPE 2019 Best Paper

6

ECE ILLINOIS

Measuring Bidirectional Transfers

GPU 0 Kernel

GPU 0 Copy

GPU 1 Copy

Transfer

GPU 0 Stream

GPU 1 Stream

copy 0 -> 1

copy 1-> 0

Transfer

CPU Activity

Measured Time

stream sync

stream sync

7

Measure runtime cost at start, and stream sync cost at end

ECE ILLINOIS

Measuring Bidirectional Transfers
wait<<<>>> record(start)

waitGPU 0 kernel

GPU 0 Copy

GPU 1 Copy

Transfer

GPU 0 Stream record(stop)

wait(start)GPU 1 Stream record(done)

copy 0 ➝ 1

copy 1 ➝ 0

wait(done)

start

Transfer

done

stop

CPU Activity

Measured Time

8

Kernel prevents copies from starting until both are issued.
Events minimize measured overhead.

ECE ILLINOIS

Why measure at all?

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

* “shared” between CPUs.

9

ECE ILLINOIS

Why measure at all?

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

10

31.4 GB/s

ECE ILLINOIS

Why measure at all?

Enable peer access near beginning of program (cudaDeviceEnablePeerAccess)

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

11

31.4 GB/s
43.8 GB/s

ECE ILLINOIS

Why measure at all?

Bidirectional transfers double bandwidth

43.8 GB/s

87.5 BG/s

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

12

31.4 GB/s

ECE ILLINOIS

Why measure at all?

Transfers between sockets are slower

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

13

25.8 GB/s

43.8 GB/s

87.5 GB/s

31.4 GB/s

ECE ILLINOIS

Why measure at all?

Bidirectional transfers are even slower

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

14

43.8 GB/s

87.5 GB/s

31.4 GB/s

25.8 GB/s
22.3 GB/s

ECE ILLINOIS

peer access ↓
bidirectional ↓

40.0 GB/s

25.8 GB/s
22.3 GB/s

28.9GB/s

Why measure at all?

Power9

V100

V100

V100

Power9

V100

V100

V100NIC

2x NVLink 2 (100 GB/s)
X bus (64 GB/s)

Infiniband
(12.5 GB/s each)

PCIe 4.0 x8*
(16 GB/s each)

Summit Node
(bidirectional bandwidth)

15

43.8 GB/s

87.5 GB/s

31.4 GB/s

Disabling peer access is faster. Systems do
not always behave according to expectations

ECE ILLINOIS

peer access ↓
bidirectional ↓

40.0 GB/s

25.8 GB/s
22.3 GB/s

28.9GB/s

Why measure at all?

16

43.8 GB/s

87.5 GB/s

31.4 GB/s
● Peer access disabled ➡ data

staged through CPU
● X-bus for CPU-CPU works as

promised, not for GPU-GPU
● Answering why as an

outsider is difficult for closed
drivers & firmware

● Some need for a high-level
test to make sure system
performs as advertised

ECE ILLINOIS

Distributed Stencils & Heterogeneous Nodes

● Finite Difference Methods
● Regular computation, access, and structure reuse ➡ stencil on GPU
● High-resolution modeling ➡ Large stencils
● Limited GPU memory ➡ distributed stencils with communication
● Fast stencil codes ➡ larger impact of communication
● Heterogeneous nodes (“fat nodes”) ➡ how to do communication

● Performance impact of the on-node optimizations
● Packaging this so science people don’t need to be GPU communications people

too

17

ECE ILLINOIS

Stencil Glossary

18

Domain

Subdomains

interior

halor

1
2

1

2

2

1 2

r = 2

r = 1

“corner”“edge”

multiple
quantities per

subdomain

ECE ILLINOIS

Approach

19

Parallelism

Placement

Primitives Asynchronous operations
Communication specialization

Assign tasks according to
theoretical performance

Achieve theoretical
performance

Node-aware placement to
utilize interconnections

Subdomain decomposition to
minimize communication

Scalable decomposition

ECE ILLINOIS

Decomposition - Minimize Required Comm.

20

Intuition: less halo-to-interior ratio means less communication

ECE ILLINOIS

Decomposition - Recursive Inertial Bisection

21

● Divide given domain into P subdomains

● Generate sorted prime factors, largest to
smallest.

○ Evenly-sized subdomain require dividing by integers.

○ Prime factors is the largest number of integers that

multiply to P

○ Most opportunity to divide into cubical subdomains

● Divide the longest dimension by prime factors
○ subdomains tend towards cubical

○ use smaller prime factors later to clean up

prime_factors

sort

P

sorted prime
factors

next
factor divide

longest
dimension

ECE ILLINOIS

Hierarchical Decomposition

22

Minimize Communication Out of Node Minimize communication between GPUs

ECE ILLINOIS

Placement

How to place subdomains on GPUs to maximize bandwidth utilization?

23

ECE ILLINOIS

Quadratic Assignment Problem

24

Abstract Concrete

w, wi,j Matrix of “flow” between facilities i and j. subdomain communication
amount

d, di,j Matrix of “distance” between locations i and j. GPU distance matrix

f n → n bijection assigning facilities to locations n vector

n facilities with “flow” between them.
n locations with “distance” between them.
Assign facilities to locations while minimizing total flow-distance product.
Facilities with a lot of flow should be close.

ECE ILLINOIS

Example Placement

25

[0, 0, 0]

[0, 1, 0]

[0, 2, 0] [1, 2, 0]

[1, 1, 0]

[1, 0, 0]

Node-Aware Placement Another Placement

[0, 0, 0]

[0, 1, 0]

[0, 2, 0]

[1, 2, 0]

[1, 1, 0]

[1, 0, 0]

gpu 1

gpu 2 gpu 5

gpu 4

P9

V100

V100

V100

P9

V100

V100

V100

20% reduced exchange time
from placement alone

gpu 0 gpu 3

ECE ILLINOIS

Capability Specialization

Achieve best use of bandwidth, regardless of
ranks/node and GPUs/rank

● “Staged”: works for any 2 GPUs anywhere
○ pack from device 3D region into device 1D buffer

○ copy from device 1D buffer to host 1D buffer

○ MPI_Isend / MPI_Irecv to other host 1D buffer

○ copy from host 1D buffer to device 1D buffer

○ unpack from device 1D buffer to device 3D buffer

Optimizations are node-aware shortcuts on top of this

26

ECE ILLINOIS

Pack and Unpack

27

x

y

z

a

b

c

a
a * b

...

a * b * c

3D View Actual Memory Layout

Packed Layout

ECE ILLINOIS

CUDA-Aware MPI

28

Same as the staged, but MPI responsible for getting data between GPUs

ECE ILLINOIS

Colocated

29

Exchange between different ranks on the same node
Different ranks are different processes with different address spaces
Use cudaIpc* to move a pointer between ranks, then cudaMemcpy*

ECE ILLINOIS

Peer- and Self-exchange

30

Peer: Two GPUs in the same rank Self: Same GPU is on both sides of the domain
Only if decomposition has extent=1 in any direction

ECE ILLINOIS

Overlap

31

U

SPeer: GPU 0 to GPU 2

SMPI

SMPIP

P

P

U

P SPeer: GPU 2 to GPU 0

P SMPI

P SMPI

T T

T T

another rank

another rank

W

another rank

another rank

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0 t = 1.9

GPU 0

GPU 2

CPU CPU Time

U

U

U
U

Rank A
Timeline (ms)

W

W

W

P: Pack a halo region into a GPU buffer
U: Unpack a GPU buffer into a halo region
T: Translate from compute domain into halo region on the same GPU
W : Wait for a packed message from another rank
SPeer: Peer send between two GPUs on the same MPI rank
SMPI: Send to a GPU on a different rank using MPI

All operations are parallel and asynchronous
May be able to trade off kernel time with communication time by storing halos in a packed configuration

ECE ILLINOIS

1 Node (Summit)

An/Br/Cg/N

A nodes

B ranks per node

C GPUs per node

N: total domain size is N3

remote: staged or CUDA-Aware only

+colo: “remote” + colocated communicators

+peer: “+colo” + peer communicator

+kernel: “+peer” + self communicator

32

6x

Specialization has a big impact in intra-node performance

More ppn = parallel MPI operations
More ppn = opportunity for colocated

ECE ILLINOIS

Weak Scaling (Summit)

33

Exchange time stabilizes once most nodes have 26 neighbors
Specialization has a smaller impact on off-node performance (1.16x at 256 nodes)

CUDA-aware causes poor scaling

Non-CUDA-aware MPI CUDA-aware MPI

1.16x

ECE ILLINOIS

Implementation - CUDA/C++ Header-only Library

https://github.com/cwpearson/stencil

Fast stencil exchange for any configuration of CUDA + MPI

Support for any combination of quantity types (float, double)

“Patch-based” approach, for integrating existing GPU kernels

● Still has a few loose ends:
○ Multi-radius stencils (improve communication performance)

○ Export to standard visualization formats

○ Checkpointing

○ Convenience functions for overlapping communication and computation

34

https://github.com/cwpearson/stencil

ECE ILLINOIS

Takeaways so Far

● Use (at least) one rank per GPU to maximize MPI injection bandwidth
● Data placement was good for 20% performance for one node
● Communication specialization was good for 6x on one node

○ still 1.16x at 256 nodes - allows MPI to just do off-node

● CUDA-Aware MPI seems like a proof-of-concept right now
● Some opportunities to improve partitioning and placement according to node

topology
● May be able to trade off kernel time with communication time by storing halos

in a packed configuration

35

ECE ILLINOIS

Future Directions

Assumed minimizing communication volume would maximize communication
performance

● Do all transfer directions have equal bandwidth?
● Do all transfers have equal cost?

36

ECE ILLINOIS

Example Node-Aware Partition

Minimal communication is not maximum performance

37

GPU 0 GPU 2

GPU 1 GPU 3

1 GB/s

10 GB/s

Hypothetical Node

4n

n

n / 1GB/s 2n / 10 GB/sTime

Partition

4n

n

4n 5nComm.

ECE ILLINOIS

All Pack Directions not Equal

Not all communication directions have same performance on same link.
Pack / Unpack performance depends on strides

38

warp size = 8,
4x4 block

coalesced writes coalesced reads

partially-coalesced
writes

partially-coalesced
reads

unpack is 2-3x slower than pack for non-contiguous regions

pack unpack

copy

ECE ILLINOIS

Future Directions

39

Task Graph
vertices: computation

edges: communication

Placement
performance, power,

contention, ...

System Graph
vertices: PEs

edges: interconnects

Execution

ECE ILLINOIS

Future Directions

40

Task Graph
vertices: computation

edges: communication

Placement
performance, power,

contention, ...

System Graph
vertices: PEs

edges: interconnects

Creation
Better eventual

placement

Execution

● e.g. implicitly: multiple MPI ranks
to reach injection bandwidth limit

● Legion’s dependent partitioning
system: arbitrary code to color
each partition

● Charm++: overdecomposition and
then recombination

● Zoltan: Hierarchical partitioning
for distributed computing

ECE ILLINOIS

Conclusion

● Careful measurement as a foundation for performance
● Examining the impact of heterogeneous communication performance
● Making successful approaches available through a library
● Algorithm-level communication performance is impacted by the system

○ Generalize to other applications?

○ Integrate with an existing task/placement/execution system

41

ECE ILLINOIS

Thank you - Carl Pearson

Ph.D. student, Electrical and Computer Engineering, University
of Illinois Urbana-Champaign

● (Multi-)GPU communication
● Accelerating irregular applications

cwpearson

cwpearson
pearson at illinois.edu
https://cwpearson.github.io

42

https://cwpearson.github.io

Extra Slides

43

44

pack unpack

Issued Ld/St 393216 393216

L2 Transactions (Texture Reads) 327840 98464

L2 Transactions (Texture Writes) 98304 327680

Issue Stall (Mem Throttle) 0.3% 43.6%

Global Load Transactions 393216 163840

Global Store Transactions 98304 327680

L2 Read Transactions 327936 98560

L2 Write Transactions 98337 583340

Dev, Mem. Read Transactions 589836 415028

Dev. Mem. Write Transactions 171218 405348

Global Load Throughput (GB/s) 238.841 34.474

Global Store Throughput (GB/s) 59.71 68.949

ECE ILLINOIS

Future Work: Store Halos Separately

Pros: no more packing and unpacking

Const: smart-pointer in cuda kernel to
redirect accesses to the right buffer

Requires evaluation on real kernels

45

ECE ILLINOIS 46

css-host-yz-20, 4 ranks, 1 GPU / rank, 71ff24, driver 440.33.01, CUDA 10.2, Ubuntu 18.04, kernel 4.14.0-74-generic, timeline_28038.nvvp

h2d

unpack

translate

streams

compute

poll
MPI_Isend MPI_Isend MPI_Irecv

MPI_Irecv

d2h

pack

ECE ILLINOIS

Future Work: Topology-Aware Placement

Extent QAP to n ~ 1k: need a better placement algorithm, SCOTCH or something?
No measurable locality on summit

47

ECE ILLINOIS 48

cudaMemcpyPeerAync
same device

cudaMemcpyPeer
between devices
followed by cudaDeviceSynchronize

cudaMemcpyPeer
same device

Spectrum MPI 10.3.0.1 puts many device-device copies in default stream, and also calls
cudaDeviceSynchronize(), which synchronizes other asynchronous operations

ECE ILLINOIS

Strong Scaling: 13633

49

?

Per-node data decreases

Overhead + load imbalance

ECE ILLINOIS

Weak Scaling (Summit) - Detail

50

ECE ILLINOIS

Weak Scaling (Summit) - CUDA-Aware Detail

51

ECE ILLINOIS

Future Work: Placement Performance

● Naive implementation right now
● Same placement on all nodes ->

only do it once, no need to
broadcast full placement
information

52

ECE ILLINOIS

Future Work: Library Performance

Measure inter-node and intra-node tiny messages
Represents overhead

53

ECE ILLINOIS

Future Work: Bandwidth Measurements

● CUDA-Aware MPI Performance
● MPI Performance

○ On-node vs off-node

● Can’t rely on specs to get actual bandwidth
● Use these instead distance for placement?

54

ECE ILLINOIS

Future Work: Further Reduce MPI messages

Consolidate all messages to a remote node into a single buffer

Pros: fewer, larger MPI messages

Cons: Incurs intra-node messaging and synchronization overhead

55

ECE ILLINOIS

Future Work: System-level heterogeneity

Whether in compute performance and communication contention

Could apply a similar placement scheme, but use ^ as inputs

Overlap with dynamic load balancing techniques?

56

ECE ILLINOIS

Solving QAP

Allocating Facilities with CRAFT. Buffa, Armour, Vollman. 1962.

Start with some initial placement
while true:
 Check all possible location swaps
 Choose swap that lowers cost the most
 if no better swap:
 break
n3 for n facilities (n swaps for n locations, roughly n iterations)
key to not recompute cost each time - each swap only changes a bit of the cost
matches exact solution for n < 6 in our case

57

ECE ILLINOIS

Abstract

High-performance distributed computing systems increasingly feature nodes that have multiple CPU

sockets and multiple GPUs. The communication bandwidth between those components depends on the

underlying hardware and system software. Consequently, the bandwidth between these components is

non-uniform, and these systems can expose different communication capabilities between these

components. Optimally using these capabilities is challenging and essential consideration on emerging

architectures. This talk starts by describing the performance of different CPU-GPU and GPU-GPU

communication methods on nodes with high-bandwidth NVLink interconnects. This foundation is then used

for domain partitioning, data placement, and communication planning in a CUDA+MPI 3D stencil halo

exchange library.

58

