Moved STENCIL_ORDER and NGHOST out of user-defined parameter as these are actually internal defines used to configure the built-in functions. Additionally, renamed all explicitly declared uniforms from dsx -> AC_dsx in the DSL in preparation for having clear connection between DSL uniforms and the library parameter handles created by the user (AcRealParam etc)
This commit is contained in:
5
acc/mhd_solver/.gitignore
vendored
Normal file
5
acc/mhd_solver/.gitignore
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
build
|
||||
testbin
|
||||
|
||||
# Except this file
|
||||
!.gitignore
|
@@ -1,27 +1,4 @@
|
||||
// Declare uniforms (i.e. device constants)
|
||||
uniform Scalar cs2_sound;
|
||||
uniform Scalar nu_visc;
|
||||
uniform Scalar cp_sound;
|
||||
uniform Scalar cv_sound;
|
||||
uniform Scalar mu0;
|
||||
uniform Scalar eta;
|
||||
uniform Scalar gamma;
|
||||
uniform Scalar zeta;
|
||||
|
||||
uniform Scalar dsx;
|
||||
uniform Scalar dsy;
|
||||
uniform Scalar dsz;
|
||||
|
||||
uniform Scalar lnT0;
|
||||
uniform Scalar lnrho0;
|
||||
|
||||
uniform int nx_min;
|
||||
uniform int ny_min;
|
||||
uniform int nz_min;
|
||||
uniform int nx;
|
||||
uniform int ny;
|
||||
uniform int nz;
|
||||
|
||||
#include "stencil_header.hh"
|
||||
|
||||
|
||||
Vector
|
||||
@@ -61,8 +38,8 @@ continuity(in VectorField uu, in ScalarField lnrho) {
|
||||
Vector
|
||||
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa) {
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar cs2 = cs2_sound * exp(gamma * value(ss) / cp_sound + (gamma - 1) * (value(lnrho) - lnrho0));
|
||||
const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound + (AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
|
||||
const Vector j = (Scalar(1.) / AC_mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Vector B = curl(aa);
|
||||
//TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
|
||||
const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));
|
||||
@@ -70,14 +47,14 @@ momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorFi
|
||||
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
|
||||
// \1
|
||||
const Vector mom = - mul(gradients(uu), value(uu))
|
||||
- cs2 * ((Scalar(1.) / cp_sound) * gradient(ss) + gradient(lnrho))
|
||||
- cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho))
|
||||
+ inv_rho * cross(j, B)
|
||||
+ nu_visc * (
|
||||
+ AC_nu_visc * (
|
||||
laplace_vec(uu)
|
||||
+ Scalar(1. / 3.) * gradient_of_divergence(uu)
|
||||
+ Scalar(2.) * mul(S, gradient(lnrho))
|
||||
)
|
||||
+ zeta * gradient_of_divergence(uu);
|
||||
+ AC_zeta * gradient_of_divergence(uu);
|
||||
return mom;
|
||||
}
|
||||
#elif LTEMPERATURE
|
||||
@@ -87,13 +64,13 @@ momentum(in VectorField uu, in ScalarField lnrho, in ScalarField tt) {
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
const Vector pressure_term = (cp_sound - cv_sound) * (gradient(tt) + value(tt) * gradient(lnrho));
|
||||
const Vector pressure_term = (AC_cp_sound - AC_cv_sound) * (gradient(tt) + value(tt) * gradient(lnrho));
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
pressure_term +
|
||||
nu_visc *
|
||||
AC_nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu);
|
||||
|
||||
#if LGRAVITY
|
||||
mom = mom - (Vector){0, 0, -10.0};
|
||||
@@ -111,10 +88,10 @@ momentum(in VectorField uu, in ScalarField lnrho) {
|
||||
// Isothermal: we have constant speed of sound
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
AC_cs2_sound * gradient(lnrho) +
|
||||
AC_nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu);
|
||||
|
||||
#if LGRAVITY
|
||||
mom = mom - (Vector){0, 0, -10.0};
|
||||
@@ -130,13 +107,13 @@ induction(in VectorField uu, in VectorField aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
|
||||
// u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ])
|
||||
const Vector B = curl(aa);
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
|
||||
// Note, mu0 is cancelled out
|
||||
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
|
||||
// Note, AC_mu0 is cancelled out
|
||||
const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap);
|
||||
|
||||
return ind;
|
||||
}
|
||||
@@ -145,27 +122,27 @@ induction(in VectorField uu, in VectorField aa) {
|
||||
#if LENTROPY
|
||||
Scalar
|
||||
lnT( in ScalarField ss, in ScalarField lnrho) {
|
||||
const Scalar lnT = lnT0 + gamma * value(ss) / cp_sound +
|
||||
(gamma - Scalar(1.)) * (value(lnrho) - lnrho0);
|
||||
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
|
||||
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
|
||||
return lnT;
|
||||
}
|
||||
|
||||
// Nabla dot (K nabla T) / (rho T)
|
||||
Scalar
|
||||
heat_conduction( in ScalarField ss, in ScalarField lnrho) {
|
||||
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
|
||||
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = - gradient(lnrho);
|
||||
|
||||
const Scalar first_term = gamma * inv_cp_sound * laplace(ss) +
|
||||
(gamma - AcReal(1.)) * laplace(lnrho);
|
||||
const Vector second_term = gamma * inv_cp_sound * gradient(ss) +
|
||||
(gamma - AcReal(1.)) * gradient(lnrho);
|
||||
const Vector third_term = gamma * (inv_cp_sound * gradient(ss) +
|
||||
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
|
||||
(AC_gamma - AcReal(1.)) * laplace(lnrho);
|
||||
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
|
||||
(AC_gamma - AcReal(1.)) * gradient(lnrho);
|
||||
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) +
|
||||
gradient(lnrho)) + grad_ln_chi;
|
||||
|
||||
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * cp_sound);
|
||||
return cp_sound * chi * (first_term + dot(second_term, third_term));
|
||||
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound);
|
||||
return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
|
||||
}
|
||||
|
||||
Scalar
|
||||
@@ -177,11 +154,11 @@ Scalar
|
||||
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) {
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
|
||||
const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Vector j = (Scalar(1.) / AC_mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Scalar RHS = H_CONST - C_CONST
|
||||
+ eta * (mu0) * dot(j, j)
|
||||
+ Scalar(2.) * exp(value(lnrho)) * nu_visc * contract(S)
|
||||
+ zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
|
||||
+ AC_eta * (AC_mu0) * dot(j, j)
|
||||
+ Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S)
|
||||
+ AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
|
||||
|
||||
return - dot(value(uu), gradient(ss))
|
||||
+ inv_pT * RHS
|
||||
@@ -195,7 +172,7 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
{
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar heat_diffusivity_k = 0.0008; //8e-4;
|
||||
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) + heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) + nu_visc * contract(S) * (Scalar(1.) / cv_sound) - (gamma - 1) * value(tt) * divergence(uu);
|
||||
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) + heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) + AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) - (AC_gamma - 1) * value(tt) * divergence(uu);
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -220,7 +197,7 @@ Vector
|
||||
helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi)
|
||||
{
|
||||
// JP: This looks wrong:
|
||||
// 1) Should it be dsx * nx instead of dsx * ny?
|
||||
// 1) Should it be AC_dsx * AC_nx instead of AC_dsx * AC_ny?
|
||||
// 2) Should you also use globalGrid.n instead of the local n?
|
||||
// MV: You are rigth. Made a quickfix. I did not see the error because multigpu is split
|
||||
// in z direction not y direction.
|
||||
@@ -229,9 +206,9 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
|
||||
// MV: Good idea. No an immediate priority.
|
||||
// Fun related article:
|
||||
// https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
|
||||
xx.x = xx.x*(2.0*M_PI/(dsx*globalGridN.x));
|
||||
xx.y = xx.y*(2.0*M_PI/(dsy*globalGridN.y));
|
||||
xx.z = xx.z*(2.0*M_PI/(dsz*globalGridN.z));
|
||||
xx.x = xx.x*(2.0*M_PI/(AC_dsx*globalGridN.x));
|
||||
xx.y = xx.y*(2.0*M_PI/(AC_dsy*globalGridN.y));
|
||||
xx.z = xx.z*(2.0*M_PI/(AC_dsz*globalGridN.z));
|
||||
|
||||
Scalar cos_phi = cos(phi);
|
||||
Scalar sin_phi = sin(phi);
|
||||
@@ -254,13 +231,13 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
|
||||
Vector
|
||||
forcing(int3 globalVertexIdx, Scalar dt)
|
||||
{
|
||||
Vector a = Scalar(.5) * (Vector){globalGridN.x * dsx,
|
||||
globalGridN.y * dsy,
|
||||
globalGridN.z * dsz}; // source (origin)
|
||||
Vector xx = (Vector){(globalVertexIdx.x - nx_min) * dsx,
|
||||
(globalVertexIdx.y - ny_min) * dsy,
|
||||
(globalVertexIdx.z - nz_min) * dsz}; // sink (current index)
|
||||
const Scalar cs2 = cs2_sound;
|
||||
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx,
|
||||
globalGridN.y * AC_dsy,
|
||||
globalGridN.z * AC_dsz}; // source (origin)
|
||||
Vector xx = (Vector){(globalVertexIdx.x - AC_nx_min) * AC_dsx,
|
||||
(globalVertexIdx.y - AC_ny_min) * AC_dsy,
|
||||
(globalVertexIdx.z - AC_nz_min) * AC_dsz}; // sink (current index)
|
||||
const Scalar cs2 = AC_cs2_sound;
|
||||
const Scalar cs = sqrt(cs2);
|
||||
|
||||
//Placeholders until determined properly
|
||||
|
@@ -228,6 +228,9 @@ translate_latest_symbol(void)
|
||||
}
|
||||
// UNIFORM
|
||||
else if (symbol->type_qualifier == UNIFORM) {
|
||||
// if (compilation_type != STENCIL_HEADER) {
|
||||
// printf("ERROR: %s can only be used in stencil headers\n", translation_table[UNIFORM]);
|
||||
//}
|
||||
/* Do nothing */
|
||||
}
|
||||
// IN / OUT
|
||||
@@ -373,6 +376,8 @@ traverse(const ASTNode* node)
|
||||
// printf("%s%s", inout_name_prefix, symbol->identifier);
|
||||
//}
|
||||
if (symbol->type_qualifier == UNIFORM) {
|
||||
printf("DCONST(%s) ", symbol->identifier);
|
||||
/*
|
||||
if (symbol->type_specifier == SCALAR)
|
||||
printf("DCONST_REAL(AC_%s) ", symbol->identifier);
|
||||
else if (symbol->type_specifier == INT)
|
||||
@@ -380,6 +385,7 @@ traverse(const ASTNode* node)
|
||||
else
|
||||
printf("INVALID UNIFORM type specifier %s with %s\n",
|
||||
translate(symbol->type_specifier), symbol->identifier);
|
||||
*/
|
||||
}
|
||||
else {
|
||||
// Do a regular translation
|
||||
|
Reference in New Issue
Block a user