Added definitions of AC_GEN_STR and AC_GEN_ID to host_memory.h and .cc since they are no longer available from astaroth.h

This commit is contained in:
jpekkila
2019-07-22 19:49:29 +03:00
parent f74df5339f
commit 074eae0bae
2 changed files with 127 additions and 115 deletions

View File

@@ -30,7 +30,9 @@
#include "core/errchk.h"
#define AC_GEN_STR(X) #X
const char* init_type_names[] = {AC_FOR_INIT_TYPES(AC_GEN_STR)};
#undef AC_GEN_STR
#define XORIG (AcReal(.5) * mesh->info.int_params[AC_nx] * mesh->info.real_params[AC_dsx])
#define YORIG (AcReal(.5) * mesh->info.int_params[AC_ny] * mesh->info.real_params[AC_dsy])
@@ -70,15 +72,13 @@ acmesh_create(const AcMeshInfo& mesh_info)
}
static void
vertex_buffer_set(const VertexBufferHandle& key, const AcReal& val,
AcMesh* mesh)
vertex_buffer_set(const VertexBufferHandle& key, const AcReal& val, AcMesh* mesh)
{
const int n = AC_VTXBUF_SIZE(mesh->info);
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[key][i] = val;
}
/** Inits all fields to 1. Setting the mesh to zero is problematic because some fields are supposed
to be > 0 and the results would vary widely, which leads to loss of precision in the
computations */
@@ -95,7 +95,6 @@ randr(void)
return AcReal(rand()) / AcReal(RAND_MAX);
}
void
lnrho_step(AcMesh* mesh)
{
@@ -121,17 +120,18 @@ lnrho_step(AcMesh* mesh)
// const AcReal rho1 = (AcReal) exp(lnrho1);
// const AcReal rho2 = (AcReal) exp(lnrho2);
// const AcReal k_pert = (AcReal) 1.0; //mesh->info.real_params[AC_k_pert]; //Wamenumber of the perturbation
// const AcReal k_pert = 4.0; //mesh->info.real_params[AC_k_pert]; //Wamenumber of the perturbation
//const AcReal ampl_pert = xmax/10.0; // xmax/mesh->info.real_params[AC_pert]; //Amplitude of the perturbation
// const AcReal ampl_pert = (AcReal) 0.0;//xmax/20.0; // xmax/mesh->info.real_params[AC_pert]; //Amplitude of the perturbation
// const AcReal two_pi = (AcReal) 6.28318531;
// const AcReal k_pert = (AcReal) 1.0; //mesh->info.real_params[AC_k_pert]; //Wamenumber of
// the perturbation const AcReal k_pert = 4.0; //mesh->info.real_params[AC_k_pert];
// //Wamenumber of the perturbation
// const AcReal ampl_pert = xmax/10.0; // xmax/mesh->info.real_params[AC_pert]; //Amplitude of
// the perturbation
// const AcReal ampl_pert = (AcReal) 0.0;//xmax/20.0; // xmax/mesh->info.real_params[AC_pert];
// //Amplitude of the perturbation const AcReal two_pi = (AcReal) 6.28318531;
// const AcReal xorig = mesh->info.real_params[AC_xorig];
// const AcReal zorig = mesh->info.real_params[AC_zorig];
// const AcReal trans = mesh->info.real_params[AC_trans];
// AcReal xx, zz, tanhprof, cosz_wave;
for (int k = 0; k < mz; k++) {
@@ -141,15 +141,13 @@ lnrho_step(AcMesh* mesh)
// zz = DZ * AcReal(k) - zorig; // Not used
// cosz_wave = ampl_pert*AcReal(cos(k_pert*((zz/zmax)*two_pi))); // Not used
// xx = DX * AcReal(i) - xorig + cosz_wave; //ADD WAVE TODO // Not used
// tanhprof = AcReal(0.5)*((rho2+rho1) + (rho2-rho1)*AcReal(tanh(xx/trans))); // Not used
// Commented out the step function initial codition.
// tanhprof = AcReal(0.5)*((rho2+rho1) + (rho2-rho1)*AcReal(tanh(xx/trans))); // Not
// used Commented out the step function initial codition.
// mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(tanhprof);
mesh->vertex_buffer[VTXBUF_LNRHO][idx] = lnrho2;
}
}
}
}
// This is the initial condition type for the infalling vedge in the pseudodisk
@@ -193,14 +191,17 @@ inflow_vedge(AcMesh* mesh)
int idx = i + j * mx + k * mx * my;
zz = DZ * double(k) - zorig;
// mesh->vertex_buffer[VTXBUF_UUX][idx] = -AMPL_UU*cos(ANGL_UU);
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(-AMPL_UU*cos(ANGL_UU)*fabs(tanh(zz/trans)));
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(-AMPL_UU * cos(ANGL_UU) *
fabs(tanh(zz / trans)));
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(-AMPL_UU*sin(ANGL_UU)*tanh(zz/trans));
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(-AMPL_UU * sin(ANGL_UU) *
tanh(zz / trans));
// Variarion to density
// AcReal rho = exp(mesh->vertex_buffer[VTXBUF_LNRHO][idx]);
// NO GAUSSIAN//rho = rho*exp(-(zz/gaussr)*(zz/gaussr));
//mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(rho + (range*rho) * (randr() - AcReal(-0.5)));
// mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(rho + (range*rho) * (randr() -
// AcReal(-0.5)));
}
}
}
@@ -273,21 +274,26 @@ inflow_vedge_freefall(AcMesh* mesh)
// printf("star_pos_z %e, zz %e, delz %e, RR %e\n", star_pos_z, zz, delz, RR);
//printf("unit_length = %e, unit_density = %e, unit_velocity = %e,\n M_star = %e, G_CONST = %e, GM = %e, SQ2GM = %e, \n RR = %e, u_x = %e, u_z %e\n",
// printf("unit_length = %e, unit_density = %e, unit_velocity = %e,\n M_star = %e,
// G_CONST = %e, GM = %e, SQ2GM = %e, \n RR = %e, u_x = %e, u_z %e\n",
// unit_length, unit_density,
// unit_velocity, M_star, G_CONST, GM, SQ2GM, RR, u_x, u_z);
// printf("%e\n", unit_length*unit_length*unit_length);
// Here including an angel tilt due to pseudodisk
if (delz >= 0.0) {
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal((u_x*cos(ANGL_UU) - u_z*sin(ANGL_UU))*tanhz);
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(
(u_x * cos(ANGL_UU) - u_z * sin(ANGL_UU)) * tanhz);
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal((u_x*sin(ANGL_UU) + u_z*cos(ANGL_UU))*tanhz);
} else {
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal((u_x*cos(ANGL_UU) + u_z*sin(ANGL_UU))*tanhz);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(
(u_x * sin(ANGL_UU) + u_z * cos(ANGL_UU)) * tanhz);
}
else {
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(
(u_x * cos(ANGL_UU) + u_z * sin(ANGL_UU)) * tanhz);
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal((-u_x*sin(ANGL_UU) + u_z*cos(ANGL_UU))*tanhz);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(
(-u_x * sin(ANGL_UU) + u_z * cos(ANGL_UU)) * tanhz);
}
}
}
@@ -328,7 +334,9 @@ inflow_freefall_x(AcMesh* mesh)
veltot = SQ2GM / sqrt(RR); // Free fall velocity
if (isinf(veltot) == 1) printf("xx %e star_pos_x %e delz %e RR %e veltot %e\n",xx, star_pos_x, delx, RR, veltot);
if (isinf(veltot) == 1)
printf("xx %e star_pos_x %e delz %e RR %e veltot %e\n", xx, star_pos_x, delx,
RR, veltot);
// Normal velocity components
// u_x = - veltot; // Not used
@@ -349,8 +357,6 @@ inflow_freefall_x(AcMesh* mesh)
}
}
void
gaussian_radial_explosion(AcMesh* mesh)
{
@@ -447,8 +453,7 @@ gaussian_radial_explosion(AcMesh* mesh)
//+-
yy_abs = -yy;
phi = 2.0 * M_PI - atan(yy_abs / xx);
if (phi < (3.0 * M_PI) / 2.0 ||
phi > (2.0 * M_PI + 1e-6)) {
if (phi < (3.0 * M_PI) / 2.0 || phi > (2.0 * M_PI + 1e-6)) {
printf("Explosion PHI WRONG +-: xx = %.3f, yy "
"= %.3f, phi = %.3e/PI, M_PI = %.3e\n",
xx, yy, phi / M_PI, M_PI);
@@ -459,21 +464,18 @@ gaussian_radial_explosion(AcMesh* mesh)
yy_abs = -yy;
xx_abs = -xx;
phi = M_PI + atan(yy_abs / xx_abs);
if (phi < M_PI ||
phi > ((3.0 * M_PI) / 2.0 + 1e-6)) {
if (phi < M_PI || phi > ((3.0 * M_PI) / 2.0 + 1e-6)) {
printf("Explosion PHI WRONG --: xx = %.3f, yy "
"= %.3f, xx_abs = %.3f, yy_abs = %.3f, "
"phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
xx, yy, xx_abs, yy_abs, phi,
(3.0 * M_PI) / 2.0);
xx, yy, xx_abs, yy_abs, phi, (3.0 * M_PI) / 2.0);
}
}
else {
//++
phi = atan(yy / xx);
if (phi < 0 || phi > M_PI / 2.0) {
printf(
"Explosion PHI WRONG --: xx = %.3f, yy = "
printf("Explosion PHI WRONG --: xx = %.3f, yy = "
"%.3f, phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
xx, yy, phi, (3.0 * M_PI) / 2.0);
}
@@ -502,8 +504,8 @@ gaussian_radial_explosion(AcMesh* mesh)
// the exact centre coordinates uu_radial = AMPL_UU*exp(
// -pow((rr - 4.0*WIDTH_UU),2.0) / (2.0*pow(WIDTH_UU, 2.0))
// ); //TODO: Parametrize the peak location.
uu_radial = AMPL_UU * exp(-pow((rr - UU_SHELL_R), 2.0) /
(2.0 * pow(WIDTH_UU, 2.0)));
uu_radial = AMPL_UU *
exp(-pow((rr - UU_SHELL_R), 2.0) / (2.0 * pow(WIDTH_UU, 2.0)));
}
else {
uu_radial = 0.0; // TODO: There will be a discontinuity in
@@ -537,7 +539,6 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
{
srand(123456789);
const int n = AC_VTXBUF_SIZE(mesh->info);
const int mx = mesh->info.int_params[AC_mx];
@@ -574,7 +575,8 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
mesh->vertex_buffer[VTXBUF_UUX][idx] = 2*AcReal(sin(j * AcReal(M_PI) / mx)) - 1;
mesh->vertex_buffer[VTXBUF_UUX][idx] = 2 * AcReal(sin(j * AcReal(M_PI) / mx)) -
1;
}
}
}
@@ -627,9 +629,15 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
const AcReal ky_uu = 8.;
const AcReal kz_uu = 8.;
mesh->vertex_buffer[VTXBUF_UUX][idx] = ampl_uu * (ABC_A * (AcReal)sin(kz_uu * zz) + ABC_C * (AcReal)cos(ky_uu * yy));
mesh->vertex_buffer[VTXBUF_UUY][idx] = ampl_uu * (ABC_B * (AcReal)sin(kx_uu * xx) + ABC_A * (AcReal)cos(kz_uu * zz));
mesh->vertex_buffer[VTXBUF_UUZ][idx] = ampl_uu * (ABC_C * (AcReal)sin(ky_uu * yy) + ABC_B * (AcReal)cos(kx_uu * xx));
mesh->vertex_buffer[VTXBUF_UUX][idx] = ampl_uu *
(ABC_A * (AcReal)sin(kz_uu * zz) +
ABC_C * (AcReal)cos(ky_uu * yy));
mesh->vertex_buffer[VTXBUF_UUY][idx] = ampl_uu *
(ABC_B * (AcReal)sin(kx_uu * xx) +
ABC_A * (AcReal)cos(kz_uu * zz));
mesh->vertex_buffer[VTXBUF_UUZ][idx] = ampl_uu *
(ABC_C * (AcReal)sin(ky_uu * yy) +
ABC_B * (AcReal)cos(kx_uu * xx));
}
}
}
@@ -644,7 +652,10 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
for (int j = ny_min; j < ny_max; j++) {
for (int i = nx_min; i < nx_max; i++) {
const int idx = i + j * mx + k * mx * my;
mesh->vertex_buffer[VTXBUF_TEMPERATURE][idx] = (range * (k - nz_min)) / mesh->info.int_params[AC_nz] + 0.1;
mesh->vertex_buffer[VTXBUF_TEMPERATURE][idx] = (range * (k - nz_min)) /
mesh->info
.int_params[AC_nz] +
0.1;
}
}
}
@@ -688,7 +699,6 @@ acmesh_destroy(AcMesh* mesh)
free(mesh);
}
ModelMesh*
modelmesh_create(const AcMeshInfo& mesh_info)
{

View File

@@ -40,7 +40,9 @@
FUNC(INIT_TYPE_RAYLEIGH_BENARD)
// clang-format on
#define AC_GEN_ID(X) X
typedef enum { AC_FOR_INIT_TYPES(AC_GEN_ID), NUM_INIT_TYPES } InitType;
#undef AC_GEN_ID
extern const char* init_type_names[]; // Defined in host_memory.cc