Added Astaroth 2.0
This commit is contained in:
70
src/core/CMakeLists.txt
Normal file
70
src/core/CMakeLists.txt
Normal file
@@ -0,0 +1,70 @@
|
||||
########################################
|
||||
## CMakeLists.txt for Astaroth Core ##
|
||||
########################################
|
||||
|
||||
#----------------------Find CUDA-----------------------------------------------#
|
||||
|
||||
find_package(CUDA)
|
||||
if (NOT CUDA_FOUND)
|
||||
# find_package(CUDA REQUIRED) gives a confusing error message if it fails,
|
||||
# therefore we print the reason here explicitly
|
||||
message(FATAL_ERROR "CUDA not found")
|
||||
endif()
|
||||
|
||||
|
||||
#----------------------CUDA settings-------------------------------------------#
|
||||
|
||||
set(CUDA_SEPARABLE_COMPILATION ON)
|
||||
set(CUDA_PROPAGATE_HOST_FLAGS ON)
|
||||
|
||||
# CUDA_BUILD_CUBIN requires that we're compiling for only one architecture
|
||||
# set(CUDA_BUILD_CUBIN ON)
|
||||
|
||||
|
||||
#----------------------Setup CUDA compilation flags----------------------------#
|
||||
|
||||
# Generate code for the default architecture (Pascal)
|
||||
set(CUDA_ARCH_FLAGS -gencode arch=compute_37,code=sm_37
|
||||
-gencode arch=compute_50,code=sm_50
|
||||
-gencode arch=compute_60,code=sm_60
|
||||
-gencode arch=compute_61,code=sm_61
|
||||
-lineinfo
|
||||
--maxrregcount=255
|
||||
-ftz=true
|
||||
-std=c++11) #--maxrregcount=255 -ftz=true #ftz = flush denormalized floats to zero
|
||||
# -Xptxas -dlcm=ca opt-in to cache all global loads to L1/texture cache
|
||||
# =cg to opt out
|
||||
|
||||
# Additional CUDA optimization flags
|
||||
if (CMAKE_BUILD_TYPE MATCHES RELEASE)
|
||||
# Doesn't set any additional flags, see CUDA_NVCC_FLAGS_DEBUG below on how
|
||||
# to add more
|
||||
set(CUDA_NVCC_FLAGS_RELEASE ${CUDA_NVCC_FLAGS_RELEASE})
|
||||
endif()
|
||||
|
||||
# Additional CUDA debug flags
|
||||
if (CMAKE_BUILD_TYPE MATCHES DEBUG)
|
||||
# The debug flags must be set inside this if clause, since either CMake 3.5
|
||||
# or nvcc 7.5 is bugged:
|
||||
# CMake converts these into empty strings when doing RELEASE build, but nvcc
|
||||
# 7.5 fails to parse empty flags.
|
||||
set(CUDA_NVCC_FLAGS_DEBUG ${CUDA_NVCC_FLAGS_DEBUG};
|
||||
--device-debug;
|
||||
--generate-line-info;
|
||||
--ptxas-options=-v)
|
||||
endif()
|
||||
|
||||
set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS};${CUDA_ARCH_FLAGS}")
|
||||
|
||||
|
||||
message("CUDA_NVCC_FLAGS: " ${CUDA_NVCC_FLAGS})
|
||||
|
||||
|
||||
#------------------Compile and create a static library-------------------------#
|
||||
file(GLOB CUDA_SOURCES "*.cu" "kernels/*.cu")
|
||||
|
||||
# Use -fPIC if -fpic not supported. Some quick non-scientific tests:
|
||||
# Without fpic: 4.94 user, 4.04 system, 0:09.88 elapsed
|
||||
# With fpic: 4.96 user, 4.02 system, 0:09.90 elapsed
|
||||
# With fPIC: 4.94 user, 4.05 system, 0:10.23 elapsed
|
||||
CUDA_ADD_LIBRARY(astaroth_core STATIC ${CUDA_SOURCES} OPTIONS --compiler-options "-fpic")
|
451
src/core/astaroth.cu
Normal file
451
src/core/astaroth.cu
Normal file
@@ -0,0 +1,451 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Multi-GPU implementation.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "astaroth.h"
|
||||
#include "errchk.h"
|
||||
|
||||
#include "device.cuh"
|
||||
#include "math_utils.h" // sum for reductions
|
||||
#include "standalone/config_loader.h" // update_config
|
||||
|
||||
const char* intparam_names[] = {AC_FOR_INT_PARAM_TYPES(AC_GEN_STR)};
|
||||
const char* realparam_names[] = {AC_FOR_REAL_PARAM_TYPES(AC_GEN_STR)};
|
||||
const char* vtxbuf_names[] = {AC_FOR_VTXBUF_HANDLES(AC_GEN_STR)};
|
||||
|
||||
|
||||
static const int MAX_NUM_DEVICES = 32;
|
||||
static int num_devices = 1;
|
||||
static Device devices[MAX_NUM_DEVICES] = {};
|
||||
|
||||
typedef struct {
|
||||
int3 m;
|
||||
int3 n;
|
||||
} Grid;
|
||||
|
||||
static Grid
|
||||
createGrid(const AcMeshInfo& config)
|
||||
{
|
||||
Grid grid;
|
||||
grid.m = (int3) {
|
||||
config.int_params[AC_mx],
|
||||
config.int_params[AC_my],
|
||||
config.int_params[AC_mz]
|
||||
};
|
||||
|
||||
grid.n = (int3) {
|
||||
config.int_params[AC_nx],
|
||||
config.int_params[AC_ny],
|
||||
config.int_params[AC_nz]
|
||||
};
|
||||
|
||||
return grid;
|
||||
}
|
||||
|
||||
static Grid grid; // A grid consists of num_devices subgrids
|
||||
static Grid subgrid;
|
||||
|
||||
static int
|
||||
gridIdx(const Grid& grid, const int i, const int j, const int k)
|
||||
{
|
||||
return i + j * grid.m.x + k * grid.m.x * grid.m.y;
|
||||
}
|
||||
|
||||
static int3
|
||||
gridIdx3d(const Grid& grid, const int idx)
|
||||
{
|
||||
return (int3){idx % grid.m.x,
|
||||
(idx % (grid.m.x * grid.m.y)) / grid.m.x,
|
||||
idx / (grid.m.x * grid.m.y)};
|
||||
}
|
||||
|
||||
void
|
||||
printInt3(const int3 vec)
|
||||
{
|
||||
printf("(%d, %d, %d)", vec.x, vec.y, vec.z);
|
||||
}
|
||||
|
||||
AcResult
|
||||
acInit(const AcMeshInfo& config)
|
||||
{
|
||||
// Check devices
|
||||
cudaGetDeviceCount(&num_devices);
|
||||
if (num_devices < 1) {
|
||||
ERROR("No CUDA devices found!");
|
||||
return AC_FAILURE;
|
||||
}
|
||||
if (num_devices > MAX_NUM_DEVICES) {
|
||||
WARNING("More devices found than MAX_NUM_DEVICES. Using only MAX_NUM_DEVICES");
|
||||
num_devices = MAX_NUM_DEVICES;
|
||||
}
|
||||
if (!AC_MULTIGPU_ENABLED) {
|
||||
WARNING("MULTIGPU_ENABLED was false. Using only one device");
|
||||
num_devices = 1; // Use only one device if multi-GPU is not enabled
|
||||
}
|
||||
// Check that num_devices is divisible with AC_nz. This makes decomposing the
|
||||
// problem domain to multiple GPUs much easier since we do not have to worry
|
||||
// about remainders
|
||||
ERRCHK_ALWAYS(config.int_params[AC_nz] % num_devices == 0);
|
||||
|
||||
// Decompose the problem domain
|
||||
// The main grid
|
||||
grid = createGrid(config);
|
||||
|
||||
// Subgrids
|
||||
AcMeshInfo subgrid_config = config;
|
||||
subgrid_config.int_params[AC_nz] /= num_devices;
|
||||
update_config(&subgrid_config);
|
||||
subgrid = createGrid(subgrid_config);
|
||||
|
||||
// Periodic boundary conditions become weird if the system can "fold unto itself".
|
||||
ERRCHK_ALWAYS(subgrid.n.x >= STENCIL_ORDER);
|
||||
ERRCHK_ALWAYS(subgrid.n.y >= STENCIL_ORDER);
|
||||
ERRCHK_ALWAYS(subgrid.n.z >= STENCIL_ORDER);
|
||||
|
||||
printf("Grid m "); printInt3(grid.m); printf("\n");
|
||||
printf("Grid n "); printInt3(grid.n); printf("\n");
|
||||
printf("Subrid m "); printInt3(subgrid.m); printf("\n");
|
||||
printf("Subrid n "); printInt3(subgrid.n); printf("\n");
|
||||
|
||||
// Initialize the devices
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
createDevice(i, subgrid_config, &devices[i]);
|
||||
printDeviceInfo(devices[i]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
acQuit(void)
|
||||
{
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
destroyDevice(devices[i]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
int
|
||||
gridIdxx(const Grid grid, const int3 idx)
|
||||
{
|
||||
return gridIdx(grid, idx.x, idx.y, idx.z);
|
||||
}
|
||||
|
||||
AcResult
|
||||
acLoadWithOffset(const AcMesh& host_mesh, const int3& src, const int num_vertices)
|
||||
{
|
||||
/*
|
||||
Here we decompose the host mesh and distribute it among the GPUs in
|
||||
the node.
|
||||
|
||||
The host mesh is a huge contiguous block of data. Its dimensions are given by
|
||||
the global variable named "grid". A "grid" is decomposed into "subgrids",
|
||||
one for each GPU. Here we check which parts of the range s0...s1 maps
|
||||
to the memory space stored by some GPU, ranging d0...d1, and transfer
|
||||
the data if needed.
|
||||
|
||||
The index mapping is inherently quite involved, but here's a picture which
|
||||
hopefully helps make sense out of all this.
|
||||
|
||||
|
||||
Grid
|
||||
|----num_vertices---|
|
||||
xxx|....................................................|xxx
|
||||
^ ^ ^ ^
|
||||
d0 d1 s0 (src) s1
|
||||
|
||||
Subgrid
|
||||
|
||||
xxx|.............|xxx
|
||||
^ ^
|
||||
d0 d1
|
||||
|
||||
^ ^
|
||||
db da
|
||||
|
||||
*/
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
const int3 d0 = (int3){0, 0, i * subgrid.n.z}; // DECOMPOSITION OFFSET HERE
|
||||
const int3 d1 = (int3){subgrid.m.x, subgrid.m.y, d0.z + subgrid.m.z};
|
||||
|
||||
const int3 s0 = src;
|
||||
const int3 s1 = gridIdx3d(grid, gridIdx(grid, s0.x, s0.y, s0.z) + num_vertices);
|
||||
|
||||
const int3 da = (int3){max(s0.x, d0.x), max(s0.y, d0.y), max(s0.z, d0.z)};
|
||||
const int3 db = (int3){min(s1.x, d1.x), min(s1.y, d1.y), min(s1.z, d1.z)};
|
||||
/*
|
||||
printf("Device %d\n", i);
|
||||
printf("\ts0: "); printInt3(s0); printf("\n");
|
||||
printf("\td0: "); printInt3(d0); printf("\n");
|
||||
printf("\tda: "); printInt3(da); printf("\n");
|
||||
printf("\tdb: "); printInt3(db); printf("\n");
|
||||
printf("\td1: "); printInt3(d1); printf("\n");
|
||||
printf("\ts1: "); printInt3(s1); printf("\n");
|
||||
printf("\t-> %s to device %d\n", db.z >= da.z ? "Copy" : "Do not copy", i);
|
||||
*/
|
||||
if (db.z >= da.z) {
|
||||
const int copy_cells = gridIdxx(subgrid, db) - gridIdxx(subgrid, da);
|
||||
const int3 da_local = (int3){da.x, da.y, da.z - i * grid.n.z / num_devices}; // DECOMPOSITION OFFSET HERE
|
||||
// printf("\t\tcopy %d cells to local index ", copy_cells); printInt3(da_local); printf("\n");
|
||||
copyMeshToDevice(devices[i], STREAM_PRIMARY, host_mesh, da, da_local, copy_cells);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
acStoreWithOffset(const int3& src, const int num_vertices, AcMesh* host_mesh)
|
||||
{
|
||||
// See acLoadWithOffset() for an explanation of the index mapping
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
const int3 d0 = (int3){0, 0, i * subgrid.n.z}; // DECOMPOSITION OFFSET HERE
|
||||
const int3 d1 = (int3){subgrid.m.x, subgrid.m.y, d0.z + subgrid.m.z};
|
||||
|
||||
const int3 s0 = src;
|
||||
const int3 s1 = gridIdx3d(grid, gridIdx(grid, s0.x, s0.y, s0.z) + num_vertices);
|
||||
|
||||
const int3 da = (int3){max(s0.x, d0.x), max(s0.y, d0.y), max(s0.z, d0.z)};
|
||||
const int3 db = (int3){min(s1.x, d1.x), min(s1.y, d1.y), min(s1.z, d1.z)};
|
||||
/*
|
||||
printf("Device %d\n", i);
|
||||
printf("\ts0: "); printInt3(s0); printf("\n");
|
||||
printf("\td0: "); printInt3(d0); printf("\n");
|
||||
printf("\tda: "); printInt3(da); printf("\n");
|
||||
printf("\tdb: "); printInt3(db); printf("\n");
|
||||
printf("\td1: "); printInt3(d1); printf("\n");
|
||||
printf("\ts1: "); printInt3(s1); printf("\n");
|
||||
printf("\t-> %s to device %d\n", db.z >= da.z ? "Copy" : "Do not copy", i);
|
||||
*/
|
||||
if (db.z >= da.z) {
|
||||
const int copy_cells = gridIdxx(subgrid, db) - gridIdxx(subgrid, da);
|
||||
const int3 da_local = (int3){da.x, da.y, da.z - i * grid.n.z / num_devices}; // DECOMPOSITION OFFSET HERE
|
||||
// printf("\t\tcopy %d cells from local index ", copy_cells); printInt3(da_local); printf("\n");
|
||||
copyMeshToHost(devices[i], STREAM_PRIMARY, da_local, da, copy_cells, host_mesh);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
// acCopyMeshToDevice
|
||||
AcResult
|
||||
acLoad(const AcMesh& host_mesh)
|
||||
{
|
||||
return acLoadWithOffset(host_mesh, (int3){0, 0, 0}, AC_VTXBUF_SIZE(host_mesh.info));
|
||||
}
|
||||
|
||||
// acCopyMeshToHost
|
||||
AcResult
|
||||
acStore(AcMesh* host_mesh)
|
||||
{
|
||||
return acStoreWithOffset((int3){0, 0, 0}, AC_VTXBUF_SIZE(host_mesh->info), host_mesh);
|
||||
}
|
||||
|
||||
AcResult
|
||||
acIntegrateStep(const int& isubstep, const AcReal& dt)
|
||||
{
|
||||
const int3 start = (int3){STENCIL_ORDER/2, STENCIL_ORDER/2, STENCIL_ORDER/2};
|
||||
const int3 end = (int3){STENCIL_ORDER/2 + subgrid.n.x,
|
||||
STENCIL_ORDER/2 + subgrid.n.y,
|
||||
STENCIL_ORDER/2 + subgrid.n.z};
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
rkStep(devices[i], STREAM_PRIMARY, isubstep, start, end, dt);
|
||||
}
|
||||
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
acBoundcondStep(void)
|
||||
{
|
||||
acSynchronize();
|
||||
if (num_devices == 1) {
|
||||
boundcondStep(devices[0], STREAM_PRIMARY,
|
||||
(int3){0, 0, 0}, (int3){subgrid.m.x, subgrid.m.y, subgrid.m.z});
|
||||
} else {
|
||||
// Local boundary conditions
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
const int3 d0 = (int3){0, 0, STENCIL_ORDER/2}; // DECOMPOSITION OFFSET HERE
|
||||
const int3 d1 = (int3){subgrid.m.x, subgrid.m.y, d0.z + subgrid.n.z};
|
||||
boundcondStep(devices[i], STREAM_PRIMARY, d0, d1);
|
||||
}
|
||||
|
||||
/*
|
||||
// ===MIIKKANOTE START==========================================
|
||||
%JP: The old way for computing boundary conditions conflicts with the
|
||||
way we have to do things with multiple GPUs.
|
||||
|
||||
The older approach relied on unified memory, which represented the whole
|
||||
memory area as one huge mesh instead of several smaller ones. However, unified memory
|
||||
in its current state is more meant for quick prototyping when performance is not an issue.
|
||||
Getting the CUDA driver to migrate data intelligently across GPUs is much more difficult than
|
||||
when managing the memory explicitly.
|
||||
|
||||
In this new approach, I have simplified the multi- and single-GPU layers significantly.
|
||||
Quick rundown:
|
||||
New struct: Grid. There are two global variables, "grid" and "subgrid", which
|
||||
contain the extents of the whole simulation domain and the decomposed grids, respectively.
|
||||
To simplify thing, we require that each GPU is assigned the same amount of work,
|
||||
therefore each GPU in the node is assigned and "subgrid.m" -sized block of data
|
||||
to work with.
|
||||
|
||||
The whole simulation domain is decomposed with respect to the z dimension.
|
||||
For example, if the grid contains (nx, ny, nz) vertices, then the subgrids
|
||||
contain (nx, ny, nz / num_devices) vertices.
|
||||
|
||||
An local index (i, j, k) in some subgrid can be mapped to the global grid with
|
||||
global idx = (i, j, k + device_id * subgrid.n.z)
|
||||
|
||||
Terminology:
|
||||
- Single-GPU function: a function defined on the single-GPU layer (device.cu)
|
||||
|
||||
Changes required to this commented code block:
|
||||
- The thread block dimensions (tpb) are no longer passed to the kernel here but in device.cu
|
||||
instead. Same holds for any complex index calculations. Instead, the local coordinates
|
||||
should be passed as an int3 type without having to consider how the data is actually
|
||||
laid out in device memory
|
||||
- The unified memory buffer no longer exists (d_buffer). Instead, we have an opaque handle
|
||||
of type "Device" which should be passed to single-GPU functions. In this file, all devices
|
||||
are stored in a global array "devices[num_devices]".
|
||||
- Every single-GPU function is executed asynchronously by default such that we
|
||||
can optimize Astaroth by executing memory transactions concurrently with computation.
|
||||
Therefore a StreamType should be passed as a parameter to single-GPU functions.
|
||||
Refresher: CUDA function calls are non-blocking when a stream is explicitly passed
|
||||
as a parameter and commands executing in different streams can be processed
|
||||
in parallel/concurrently.
|
||||
|
||||
|
||||
Note on periodic boundaries (might be helpful when implementing other boundary conditions):
|
||||
|
||||
With multiple GPUs, periodic boundary conditions applied on indices ranging from
|
||||
|
||||
(0, 0, STENCIL_ORDER/2) to (subgrid.m.x, subgrid.m.y, subgrid.m.z - STENCIL_ORDER/2)
|
||||
|
||||
on a single device are "local", in the sense that they can be computed without having
|
||||
to exchange data with neighboring GPUs. Special care is needed only for transferring
|
||||
the data to the fron and back plates outside this range. In the solution we use here,
|
||||
we solve the local boundaries first, and then just exchange the front and back plates
|
||||
in a "ring", like so
|
||||
device_id
|
||||
(n) <-> 0 <-> 1 <-> ... <-> n <-> (0)
|
||||
|
||||
|
||||
// ======MIIKKANOTE END==========================================
|
||||
|
||||
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< MIIKKANOTE: This code block was essentially
|
||||
moved into device.cu, function boundCondStep()
|
||||
In astaroth.cu, we use acBoundcondStep()
|
||||
just to distribute the work and manage
|
||||
communication between GPUs.
|
||||
|
||||
printf("Boundconds best dims (%d, %d, %d) %f ms\n", best_dims.x, best_dims.y, best_dims.z, double(best_time) / NUM_ITERATIONS);
|
||||
|
||||
exit(0);
|
||||
#else
|
||||
|
||||
|
||||
const int depth = (int)ceil(mesh_info.int_params[AC_mz]/(float)num_devices);
|
||||
|
||||
const int3 start = (int3){0, 0, device_id * depth};
|
||||
const int3 end = (int3){mesh_info.int_params[AC_mx],
|
||||
mesh_info.int_params[AC_my],
|
||||
min((device_id+1) * depth, mesh_info.int_params[AC_mz])};
|
||||
|
||||
const dim3 tpb(8,2,8);
|
||||
|
||||
// TODO uses the default stream currently
|
||||
if (mesh_info.int_params[AC_bc_type] == 666) { // TODO MAKE A BETTER SWITCH
|
||||
wedge_boundconds(0, tpb, start, end, d_buffer);
|
||||
} else {
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
periodic_boundconds(0, tpb, start, end, d_buffer.in[i]);
|
||||
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
|
||||
*/
|
||||
// Exchange halos
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
const int num_vertices = subgrid.m.x * subgrid.m.y * STENCIL_ORDER/2;
|
||||
// ...|ooooxxx|... -> xxx|ooooooo|...
|
||||
{
|
||||
const int3 src = (int3) {0, 0, subgrid.n.z};
|
||||
const int3 dst = (int3) {0, 0, 0};
|
||||
copyMeshDeviceToDevice(devices[i], STREAM_PRIMARY, src, devices[(i+1) % num_devices], dst, num_vertices);
|
||||
}
|
||||
// ...|ooooooo|xxx <- ...|xxxoooo|...
|
||||
{
|
||||
const int3 src = (int3) {0, 0, STENCIL_ORDER/2};
|
||||
const int3 dst = (int3) {0, 0, STENCIL_ORDER/2 + subgrid.n.z};
|
||||
copyMeshDeviceToDevice(devices[(i+1) % num_devices], STREAM_PRIMARY, src, devices[i], dst, num_vertices);
|
||||
}
|
||||
}
|
||||
}
|
||||
acSynchronize();
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
static AcResult
|
||||
acSwapBuffers(void)
|
||||
{
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
swapBuffers(devices[i]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
acIntegrate(const AcReal& dt)
|
||||
{
|
||||
for (int isubstep = 0; isubstep < 3; ++isubstep) {
|
||||
acBoundcondStep();
|
||||
acIntegrateStep(isubstep, dt);
|
||||
acSwapBuffers();
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcReal
|
||||
acReduceScal(const ReductionType& rtype,
|
||||
const VertexBufferHandle& vtxbuffer_handle)
|
||||
{
|
||||
// TODO
|
||||
return 0;
|
||||
}
|
||||
|
||||
AcReal
|
||||
acReduceVec(const ReductionType& rtype, const VertexBufferHandle& a,
|
||||
const VertexBufferHandle& b, const VertexBufferHandle& c)
|
||||
{
|
||||
// TODO
|
||||
return 0;
|
||||
}
|
||||
|
||||
AcResult
|
||||
acSynchronize(void)
|
||||
{
|
||||
for (int i = 0; i < num_devices; ++i) {
|
||||
synchronize(devices[i], STREAM_ALL);
|
||||
}
|
||||
|
||||
return AC_SUCCESS;
|
||||
}
|
309
src/core/device.cu
Normal file
309
src/core/device.cu
Normal file
@@ -0,0 +1,309 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "device.cuh"
|
||||
|
||||
#include "errchk.h"
|
||||
|
||||
typedef struct {
|
||||
AcReal* in[NUM_VTXBUF_HANDLES];
|
||||
AcReal* out[NUM_VTXBUF_HANDLES];
|
||||
} VertexBufferArray;
|
||||
|
||||
__constant__ AcMeshInfo d_mesh_info;
|
||||
#define DCONST_INT(X) (d_mesh_info.int_params[X])
|
||||
#define DCONST_REAL(X) (d_mesh_info.real_params[X])
|
||||
#define DEVICE_VTXBUF_IDX(i, j, k) ((i) + (j)*DCONST_INT(AC_mx) + (k)*DCONST_INT(AC_mxy))
|
||||
#include "kernels/kernels.cuh"
|
||||
|
||||
struct device_s {
|
||||
int id;
|
||||
AcMeshInfo local_config;
|
||||
|
||||
// Concurrency
|
||||
cudaStream_t streams[NUM_STREAM_TYPES];
|
||||
|
||||
// Memory
|
||||
VertexBufferArray vba;
|
||||
AcReal* reduce_scratchpad;
|
||||
AcReal* reduce_result;
|
||||
};
|
||||
|
||||
AcResult
|
||||
printDeviceInfo(const Device device)
|
||||
{
|
||||
const int device_id = device->id;
|
||||
|
||||
cudaDeviceProp props;
|
||||
cudaGetDeviceProperties(&props, device_id);
|
||||
printf("--------------------------------------------------\n");
|
||||
printf("Device Number: %d\n", device_id);
|
||||
const size_t bus_id_max_len = 128;
|
||||
char bus_id[bus_id_max_len];
|
||||
cudaDeviceGetPCIBusId(bus_id, bus_id_max_len, device_id);
|
||||
printf(" PCI bus ID: %s\n", bus_id);
|
||||
printf(" Device name: %s\n", props.name);
|
||||
printf(" Compute capability: %d.%d\n", props.major, props.minor);
|
||||
|
||||
// Compute
|
||||
printf(" Compute\n");
|
||||
printf(" Clock rate (GHz): %g\n", props.clockRate / 1e6); // KHz -> GHz
|
||||
printf(" Stream processors: %d\n", props.multiProcessorCount);
|
||||
printf(" SP to DP flops performance ratio: %d:1\n", props.singleToDoublePrecisionPerfRatio);
|
||||
printf(" Compute mode: %d\n", (int)props.computeMode); // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g7eb25f5413a962faad0956d92bae10d0
|
||||
// Memory
|
||||
printf(" Global memory\n");
|
||||
printf(" Memory Clock Rate (MHz): %d\n", props.memoryClockRate / (1000));
|
||||
printf(" Memory Bus Width (bits): %d\n", props.memoryBusWidth);
|
||||
printf(" Peak Memory Bandwidth (GiB/s): %f\n",
|
||||
2 * (props.memoryClockRate * 1e3) * props.memoryBusWidth /
|
||||
(8. * 1024. * 1024. * 1024.));
|
||||
printf(" ECC enabled: %d\n", props.ECCEnabled);
|
||||
// Memory usage
|
||||
size_t free_bytes, total_bytes;
|
||||
cudaMemGetInfo(&free_bytes, &total_bytes);
|
||||
const size_t used_bytes = total_bytes - free_bytes;
|
||||
printf(" Total global mem: %.2f GiB\n",
|
||||
props.totalGlobalMem / (1024.0 * 1024 * 1024));
|
||||
printf(" Gmem used (GiB): %.2f\n", used_bytes / (1024.0 * 1024 * 1024));
|
||||
printf(" Gmem memory free (GiB): %.2f\n",
|
||||
free_bytes / (1024.0 * 1024 * 1024));
|
||||
printf(" Gmem memory total (GiB): %.2f\n",
|
||||
total_bytes / (1024.0 * 1024 * 1024));
|
||||
printf(" Caches\n");
|
||||
printf(" Local L1 cache supported: %d\n", props.localL1CacheSupported);
|
||||
printf(" Global L1 cache supported: %d\n", props.globalL1CacheSupported);
|
||||
printf(" L2 size: %d KiB\n", props.l2CacheSize / (1024));
|
||||
printf(" Total const mem: %ld KiB\n", props.totalConstMem / (1024));
|
||||
printf(" Shared mem per block: %ld KiB\n",
|
||||
props.sharedMemPerBlock / (1024));
|
||||
printf(" Other\n");
|
||||
printf(" Warp size: %d\n", props.warpSize);
|
||||
// printf(" Single to double perf. ratio: %dx\n",
|
||||
// props.singleToDoublePrecisionPerfRatio); //Not supported with older CUDA
|
||||
// versions
|
||||
printf(" Stream priorities supported: %d\n",
|
||||
props.streamPrioritiesSupported);
|
||||
printf("--------------------------------------------------\n");
|
||||
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
static __global__ void dummy_kernel(void) {}
|
||||
|
||||
AcResult
|
||||
createDevice(const int id, const AcMeshInfo device_config, Device* device_handle)
|
||||
{
|
||||
cudaSetDevice(id);
|
||||
cudaDeviceReset();
|
||||
|
||||
// Create Device
|
||||
struct device_s* device = (struct device_s*) malloc(sizeof(*device));
|
||||
ERRCHK_ALWAYS(device);
|
||||
|
||||
device->id = id;
|
||||
device->local_config = device_config;
|
||||
|
||||
// Check that the code was compiled for the proper GPU architecture
|
||||
printf("Trying to run a dummy kernel. If this fails, make sure that your\n"
|
||||
"device supports the CUDA architecture you are compiling for.\n"
|
||||
"Running dummy kernel... ");
|
||||
fflush(stdout);
|
||||
dummy_kernel<<<1, 1>>>();
|
||||
ERRCHK_CUDA_KERNEL_ALWAYS();
|
||||
printf("Success!\n");
|
||||
|
||||
// Concurrency
|
||||
for (int i = 0; i < NUM_STREAM_TYPES; ++i) {
|
||||
cudaStreamCreate(&device->streams[i]);
|
||||
}
|
||||
|
||||
// Memory
|
||||
const size_t vba_size_bytes = AC_VTXBUF_SIZE_BYTES(device_config);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->vba.in[i], vba_size_bytes));
|
||||
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->vba.out[i], vba_size_bytes));
|
||||
}
|
||||
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->reduce_scratchpad,
|
||||
AC_VTXBUF_COMPDOMAIN_SIZE_BYTES(device_config)));
|
||||
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->reduce_result, sizeof(AcReal)));
|
||||
|
||||
// Device constants
|
||||
ERRCHK_CUDA_ALWAYS(cudaMemcpyToSymbol(d_mesh_info, &device_config, sizeof(device_config), 0,
|
||||
cudaMemcpyHostToDevice));
|
||||
|
||||
printf("Created device %d (%p)\n", device->id, device);
|
||||
*device_handle = device;
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
destroyDevice(Device device)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
printf("Destroying device %d (%p)\n", device->id, device);
|
||||
|
||||
// Memory
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
cudaFree(device->vba.in[i]);
|
||||
cudaFree(device->vba.out[i]);
|
||||
}
|
||||
cudaFree(device->reduce_scratchpad);
|
||||
cudaFree(device->reduce_result);
|
||||
|
||||
// Concurrency
|
||||
for (int i = 0; i < NUM_STREAM_TYPES; ++i)
|
||||
cudaStreamDestroy(device->streams[i]);
|
||||
|
||||
// Destroy Device
|
||||
free(device);
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
boundcondStep(const Device device, const StreamType stream_type, const int3& start, const int3& end)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
periodic_boundconds(device->streams[stream_type], start, end, device->vba.in[i]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
reduceScal(const Device device)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
reduceVec(const Device device)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
rkStep(const Device device, const StreamType stream_type, const int step_number,
|
||||
const int3& start, const int3& end, const AcReal dt)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
rk3_step_async(device->streams[stream_type], step_number, start, end, dt, &device->vba);
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
synchronize(const Device device, const StreamType stream_type)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
if (stream_type == STREAM_ALL) {
|
||||
cudaDeviceSynchronize();
|
||||
} else {
|
||||
cudaStreamSynchronize(device->streams[stream_type]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
static AcResult
|
||||
loadWithOffset(const Device device, const StreamType stream_type,
|
||||
const AcReal* src, const size_t bytes, AcReal* dst)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
ERRCHK_CUDA(cudaMemcpyAsync(dst, src, bytes, cudaMemcpyHostToDevice,
|
||||
device->streams[stream_type]));
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
static AcResult
|
||||
storeWithOffset(const Device device, const StreamType stream_type,
|
||||
const AcReal* src, const size_t bytes, AcReal* dst)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
ERRCHK_CUDA(cudaMemcpyAsync(dst, src, bytes, cudaMemcpyDeviceToHost,
|
||||
device->streams[stream_type]));
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
copyMeshToDevice(const Device device, const StreamType stream_type,
|
||||
const AcMesh& host_mesh, const int3& src, const int3& dst,
|
||||
const int num_vertices)
|
||||
{
|
||||
const size_t src_idx = AC_VTXBUF_IDX(src.x, src.y, src.z, host_mesh.info);
|
||||
const size_t dst_idx = AC_VTXBUF_IDX(dst.x, dst.y, dst.z, device->local_config);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
loadWithOffset(device, stream_type, &host_mesh.vertex_buffer[i][src_idx], num_vertices * sizeof(AcReal),
|
||||
&device->vba.in[i][dst_idx]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
copyMeshToHost(const Device device, const StreamType stream_type,
|
||||
const int3& src, const int3& dst, const int num_vertices,
|
||||
AcMesh* host_mesh)
|
||||
{
|
||||
const size_t src_idx = AC_VTXBUF_IDX(src.x, src.y, src.z, device->local_config);
|
||||
const size_t dst_idx = AC_VTXBUF_IDX(dst.x, dst.y, dst.z, host_mesh->info);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
storeWithOffset(device, stream_type, &device->vba.in[i][src_idx],
|
||||
num_vertices * sizeof(AcReal),
|
||||
&host_mesh->vertex_buffer[i][dst_idx]);
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
AcResult
|
||||
copyMeshDeviceToDevice(const Device src_device, const StreamType stream_type,
|
||||
const int3& src, Device dst_device, const int3& dst,
|
||||
const int num_vertices)
|
||||
{
|
||||
cudaSetDevice(src_device->id);
|
||||
const size_t src_idx = AC_VTXBUF_IDX(src.x, src.y, src.z, src_device->local_config);
|
||||
const size_t dst_idx = AC_VTXBUF_IDX(dst.x, dst.y, dst.z, dst_device->local_config);
|
||||
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
ERRCHK_CUDA(cudaMemcpyPeerAsync(&dst_device->vba.in[i][dst_idx], dst_device->id,
|
||||
&src_device->vba.in[i][src_idx], src_device->id,
|
||||
sizeof(src_device->vba.in[i][0]) * num_vertices,
|
||||
src_device->streams[stream_type]));
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
AcResult
|
||||
swapBuffers(const Device device)
|
||||
{
|
||||
cudaSetDevice(device->id);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
AcReal* tmp = device->vba.in[i];
|
||||
device->vba.in[i] = device->vba.out[i];
|
||||
device->vba.out[i] = tmp;
|
||||
}
|
||||
return AC_SUCCESS;
|
||||
}
|
82
src/core/device.cuh
Normal file
82
src/core/device.cuh
Normal file
@@ -0,0 +1,82 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
|
||||
typedef enum {
|
||||
STREAM_PRIMARY,
|
||||
STREAM_SECONDARY,
|
||||
NUM_STREAM_TYPES,
|
||||
STREAM_ALL
|
||||
} StreamType;
|
||||
|
||||
typedef struct device_s* Device; // Opaque pointer to device_s. Analogous to dispatchable handles
|
||||
// in Vulkan, f.ex. VkDevice
|
||||
|
||||
/** */
|
||||
AcResult printDeviceInfo(const Device device);
|
||||
|
||||
/** */
|
||||
AcResult createDevice(const int id, const AcMeshInfo device_config, Device* device);
|
||||
|
||||
/** */
|
||||
AcResult destroyDevice(Device device);
|
||||
|
||||
/** */
|
||||
AcResult boundcondStep(const Device device, const StreamType stream_type,
|
||||
const int3& start, const int3& end);
|
||||
|
||||
/** */
|
||||
AcResult reduceScal(const Device device);
|
||||
|
||||
/** */
|
||||
AcResult reduceVec(const Device device);
|
||||
|
||||
/** */
|
||||
AcResult rkStep(const Device device, const StreamType stream_type, const int step_number,
|
||||
const int3& start, const int3& end, const AcReal dt);
|
||||
|
||||
/** Sychronizes the device with respect to stream_type. If STREAM_ALL is given as
|
||||
a StreamType, the function synchronizes all streams on the device. */
|
||||
AcResult synchronize(const Device device, const StreamType stream_type);
|
||||
|
||||
/** */
|
||||
AcResult copyMeshToDevice(const Device device, const StreamType stream_type,
|
||||
const AcMesh& host_mesh, const int3& src, const int3& dst,
|
||||
const int num_vertices);
|
||||
|
||||
/** */
|
||||
AcResult copyMeshToHost(const Device device, const StreamType stream_type,
|
||||
const int3& src, const int3& dst, const int num_vertices,
|
||||
AcMesh* host_mesh);
|
||||
|
||||
/** */
|
||||
AcResult copyMeshDeviceToDevice(const Device src, const StreamType stream_type, const int3& src_idx,
|
||||
Device dst, const int3& dst_idx, const int num_vertices);
|
||||
|
||||
/** Swaps the input/output buffers used in computations */
|
||||
AcResult swapBuffers(const Device device);
|
112
src/core/errchk.h
Normal file
112
src/core/errchk.h
Normal file
@@ -0,0 +1,112 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
|
||||
// clang-format off
|
||||
/*
|
||||
* =============================================================================
|
||||
* General error checking
|
||||
* =============================================================================
|
||||
*/
|
||||
#define ERROR(str) \
|
||||
{ \
|
||||
time_t t; time(&t); \
|
||||
fprintf(stderr, "%s", ctime(&t)); \
|
||||
fprintf(stderr, "\tError in file %s line %d: %s\n", \
|
||||
__FILE__, __LINE__, str); \
|
||||
fflush(stderr); \
|
||||
exit(EXIT_FAILURE); \
|
||||
abort(); \
|
||||
}
|
||||
|
||||
#define WARNING(str) \
|
||||
{ \
|
||||
time_t t; time(&t); \
|
||||
fprintf(stderr, "%s", ctime(&t)); \
|
||||
fprintf(stderr, "\tWarning in file %s line %d: %s\n", \
|
||||
__FILE__, __LINE__, str); \
|
||||
fflush(stderr); \
|
||||
}
|
||||
|
||||
// DO NOT REMOVE BRACKETS AROUND RETVAL. F.ex. if (!a < b) vs if (!(a < b)).
|
||||
#define ERRCHK(retval) { if (!(retval)) ERROR(#retval " was false"); }
|
||||
#define WARNCHK(retval) { if (!(retval)) WARNING(#retval " was false"); }
|
||||
#define ERRCHK_ALWAYS(retval) { if (!(retval)) ERROR(#retval " was false"); }
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* CUDA-specific error checking
|
||||
* =============================================================================
|
||||
*/
|
||||
#ifdef __CUDACC__
|
||||
static inline void
|
||||
cuda_assert(cudaError_t code, const char* file, int line, bool abort = true)
|
||||
{
|
||||
if (code != cudaSuccess) {
|
||||
time_t t; time(&t); \
|
||||
fprintf(stderr, "%s", ctime(&t)); \
|
||||
fprintf(stderr, "\tCUDA error in file %s line %d: %s\n", \
|
||||
file, line, cudaGetErrorString(code)); \
|
||||
fflush(stderr); \
|
||||
|
||||
if (abort)
|
||||
exit(code);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef NDEBUG
|
||||
#undef ERRCHK
|
||||
#undef WARNCHK
|
||||
#define ERRCHK(params)
|
||||
#define WARNCHK(params)
|
||||
#define ERRCHK_CUDA(params) params;
|
||||
#define WARNCHK_CUDA(params) params;
|
||||
#define ERRCHK_CUDA_KERNEL() {}
|
||||
#else
|
||||
#define ERRCHK_CUDA(params) { cuda_assert((params), __FILE__, __LINE__); }
|
||||
#define WARNCHK_CUDA(params) { cuda_assert((params), __FILE__, __LINE__, false); }
|
||||
|
||||
#define ERRCHK_CUDA_KERNEL() \
|
||||
{ \
|
||||
ERRCHK_CUDA(cudaPeekAtLastError()); \
|
||||
ERRCHK_CUDA(cudaDeviceSynchronize()); \
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#define ERRCHK_CUDA_ALWAYS(params) { cuda_assert((params), __FILE__, __LINE__); }
|
||||
|
||||
#define ERRCHK_CUDA_KERNEL_ALWAYS() \
|
||||
{ \
|
||||
ERRCHK_CUDA_ALWAYS(cudaPeekAtLastError()); \
|
||||
ERRCHK_CUDA_ALWAYS(cudaDeviceSynchronize()); \
|
||||
}
|
||||
// clang-format on
|
2
src/core/kernels/.gitignore
vendored
Normal file
2
src/core/kernels/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
# Ignore the generated headers
|
||||
stencil_process.cuh stencil_assembly.cuh
|
1363
src/core/kernels/boundconds.cuh
Normal file
1363
src/core/kernels/boundconds.cuh
Normal file
File diff suppressed because it is too large
Load Diff
794
src/core/kernels/kernels.cuh
Normal file
794
src/core/kernels/kernels.cuh
Normal file
@@ -0,0 +1,794 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
__global__ void
|
||||
kernel_periodic_boundconds(const int3 start, const int3 end, AcReal* vertex_buffer)
|
||||
{
|
||||
const int i_dst = start.x + threadIdx.x + blockIdx.x * blockDim.x;
|
||||
const int j_dst = start.y + threadIdx.y + blockIdx.y * blockDim.y;
|
||||
const int k_dst = start.z + threadIdx.z + blockIdx.z * blockDim.z;
|
||||
|
||||
// If within the start-end range (this allows threadblock dims that are not
|
||||
// divisible by end - start)
|
||||
if (i_dst >= end.x || j_dst >= end.y || k_dst >= end.z)
|
||||
return;
|
||||
|
||||
//if (i_dst >= DCONST_INT(AC_mx) || j_dst >= DCONST_INT(AC_my) || k_dst >= DCONST_INT(AC_mz))
|
||||
// return;
|
||||
|
||||
// If destination index is inside the computational domain, return since
|
||||
// the boundary conditions are only applied to the ghost zones
|
||||
if (i_dst >= DCONST_INT(AC_nx_min) && i_dst < DCONST_INT(AC_nx_max) &&
|
||||
j_dst >= DCONST_INT(AC_ny_min) && j_dst < DCONST_INT(AC_ny_max) &&
|
||||
k_dst >= DCONST_INT(AC_nz_min) && k_dst < DCONST_INT(AC_nz_max))
|
||||
return;
|
||||
|
||||
// Find the source index
|
||||
// Map to nx, ny, nz coordinates
|
||||
int i_src = i_dst - DCONST_INT(AC_nx_min);
|
||||
int j_src = j_dst - DCONST_INT(AC_ny_min);
|
||||
int k_src = k_dst - DCONST_INT(AC_nz_min);
|
||||
|
||||
// Translate (s.t. the index is always positive)
|
||||
i_src += DCONST_INT(AC_nx);
|
||||
j_src += DCONST_INT(AC_ny);
|
||||
k_src += DCONST_INT(AC_nz);
|
||||
|
||||
// Wrap
|
||||
i_src %= DCONST_INT(AC_nx);
|
||||
j_src %= DCONST_INT(AC_ny);
|
||||
k_src %= DCONST_INT(AC_nz);
|
||||
|
||||
// Map to mx, my, mz coordinates
|
||||
i_src += DCONST_INT(AC_nx_min);
|
||||
j_src += DCONST_INT(AC_ny_min);
|
||||
k_src += DCONST_INT(AC_nz_min);
|
||||
|
||||
const int src_idx = DEVICE_VTXBUF_IDX(i_src, j_src, k_src);
|
||||
const int dst_idx = DEVICE_VTXBUF_IDX(i_dst, j_dst, k_dst);
|
||||
vertex_buffer[dst_idx] = vertex_buffer[src_idx];
|
||||
}
|
||||
|
||||
void
|
||||
periodic_boundconds(const cudaStream_t stream, const int3& start, const int3& end, AcReal* vertex_buffer)
|
||||
{
|
||||
const dim3 tpb(8,2,8);
|
||||
const dim3 bpg((unsigned int)ceil((end.x - start.x) / (float)tpb.x),
|
||||
(unsigned int)ceil((end.y - start.y) / (float)tpb.y),
|
||||
(unsigned int)ceil((end.z - start.z) / (float)tpb.z));
|
||||
|
||||
kernel_periodic_boundconds<<<bpg, tpb, 0, stream>>>(start, end, vertex_buffer);
|
||||
ERRCHK_CUDA_KERNEL();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#include <assert.h>
|
||||
|
||||
|
||||
static __device__ __forceinline__ int
|
||||
IDX(const int i)
|
||||
{
|
||||
return i;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int
|
||||
IDX(const int i, const int j, const int k)
|
||||
{
|
||||
return DEVICE_VTXBUF_IDX(i, j, k);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int
|
||||
IDX(const int3 idx)
|
||||
{
|
||||
return DEVICE_VTXBUF_IDX(idx.x, idx.y, idx.z);
|
||||
}
|
||||
|
||||
static __forceinline__ AcMatrix
|
||||
create_rotz(const AcReal radians)
|
||||
{
|
||||
AcMatrix mat;
|
||||
|
||||
mat.row[0] = (AcReal3){cos(radians), -sin(radians), 0};
|
||||
mat.row[1] = (AcReal3){sin(radians), cos(radians), 0};
|
||||
mat.row[2] = (AcReal3){0, 0, 0};
|
||||
|
||||
return mat;
|
||||
}
|
||||
|
||||
|
||||
#if AC_DOUBLE_PRECISION == 0
|
||||
#define sin __sinf
|
||||
#define cos __cosf
|
||||
#define exp __expf
|
||||
#define rsqrt rsqrtf // hardware reciprocal sqrt
|
||||
#endif // AC_DOUBLE_PRECISION == 0
|
||||
|
||||
|
||||
/*
|
||||
typedef struct {
|
||||
int i, j, k;
|
||||
} int3;*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0 (Input Assembly Stage)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0.1 (Read stencil elements and solve derivatives)
|
||||
* =============================================================================
|
||||
*/
|
||||
static __device__ __forceinline__ AcReal
|
||||
first_derivative(const AcReal* __restrict__ pencil, const AcReal inv_ds)
|
||||
{
|
||||
#if STENCIL_ORDER == 2
|
||||
const AcReal coefficients[] = {0, 1.0 / 2.0};
|
||||
#elif STENCIL_ORDER == 4
|
||||
const AcReal coefficients[] = {0, 2.0 / 3.0, -1.0 / 12.0};
|
||||
#elif STENCIL_ORDER == 6
|
||||
const AcReal coefficients[] = {0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0};
|
||||
#elif STENCIL_ORDER == 8
|
||||
const AcReal coefficients[] = {0, 4.0 / 5.0, -1.0 / 5.0, 4.0 / 105.0,
|
||||
-1.0 / 280.0};
|
||||
#endif
|
||||
|
||||
#define MID (STENCIL_ORDER / 2)
|
||||
AcReal res = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= MID; ++i)
|
||||
res += coefficients[i] * (pencil[MID + i] - pencil[MID - i]);
|
||||
|
||||
return res * inv_ds;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
second_derivative(const AcReal* __restrict__ pencil, const AcReal inv_ds)
|
||||
{
|
||||
#if STENCIL_ORDER == 2
|
||||
const AcReal coefficients[] = {-2., 1.};
|
||||
#elif STENCIL_ORDER == 4
|
||||
const AcReal coefficients[] = {-5.0/2.0, 4.0/3.0, -1.0/12.0};
|
||||
#elif STENCIL_ORDER == 6
|
||||
const AcReal coefficients[] = {-49.0 / 18.0, 3.0 / 2.0, -3.0 / 20.0,
|
||||
1.0 / 90.0};
|
||||
#elif STENCIL_ORDER == 8
|
||||
const AcReal coefficients[] = {-205.0 / 72.0, 8.0 / 5.0, -1.0 / 5.0,
|
||||
8.0 / 315.0, -1.0 / 560.0};
|
||||
#endif
|
||||
|
||||
#define MID (STENCIL_ORDER / 2)
|
||||
AcReal res = coefficients[0] * pencil[MID];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= MID; ++i)
|
||||
res += coefficients[i] * (pencil[MID + i] + pencil[MID - i]);
|
||||
|
||||
return res * inv_ds * inv_ds;
|
||||
}
|
||||
|
||||
/** inv_ds: inverted mesh spacing f.ex. 1. / mesh.int_params[AC_dsx] */
|
||||
static __device__ __forceinline__ AcReal
|
||||
cross_derivative(const AcReal* __restrict__ pencil_a,
|
||||
const AcReal* __restrict__ pencil_b, const AcReal inv_ds_a,
|
||||
const AcReal inv_ds_b)
|
||||
{
|
||||
#if STENCIL_ORDER == 2
|
||||
const AcReal coefficients[] = {0, 1.0 / 4.0};
|
||||
#elif STENCIL_ORDER == 4
|
||||
const AcReal coefficients[] = {0, 1.0 / 32.0, 1.0 / 64.0}; // TODO correct coefficients, these are just placeholders
|
||||
#elif STENCIL_ORDER == 6
|
||||
const AcReal fac = (1. / 720.);
|
||||
const AcReal coefficients[] = {0.0 * fac, 270.0 * fac, -27.0 * fac,
|
||||
2.0 * fac};
|
||||
#elif STENCIL_ORDER == 8
|
||||
const AcReal fac = (1. / 20160.);
|
||||
const AcReal coefficients[] = {0.0 * fac, 8064. * fac, -1008. * fac,
|
||||
128. * fac, -9. * fac};
|
||||
#endif
|
||||
|
||||
#define MID (STENCIL_ORDER / 2)
|
||||
AcReal res = AcReal(0.);
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= MID; ++i) {
|
||||
res += coefficients[i] * (pencil_a[MID + i] + pencil_a[MID - i] -
|
||||
pencil_b[MID + i] - pencil_b[MID - i]);
|
||||
}
|
||||
return res * inv_ds_a * inv_ds_b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derx(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y, vertexIdx.z)];
|
||||
|
||||
return first_derivative(pencil, DCONST_REAL(AC_inv_dsx));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derxx(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y, vertexIdx.z)];
|
||||
|
||||
return second_derivative(pencil, DCONST_REAL(AC_inv_dsx));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derxy(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil_a[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_a[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.y + offset - STENCIL_ORDER / 2, vertexIdx.z)];
|
||||
|
||||
AcReal pencil_b[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_b[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.y + STENCIL_ORDER / 2 - offset, vertexIdx.z)];
|
||||
|
||||
return cross_derivative(pencil_a, pencil_b, DCONST_REAL(AC_inv_dsx),
|
||||
DCONST_REAL(AC_inv_dsy));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derxz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil_a[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_a[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y,
|
||||
vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
AcReal pencil_b[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_b[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y,
|
||||
vertexIdx.z + STENCIL_ORDER / 2 - offset)];
|
||||
|
||||
return cross_derivative(pencil_a, pencil_b, DCONST_REAL(AC_inv_dsx),
|
||||
DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
dery(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2, vertexIdx.z)];
|
||||
|
||||
return first_derivative(pencil, DCONST_REAL(AC_inv_dsy));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
deryy(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2, vertexIdx.z)];
|
||||
|
||||
return second_derivative(pencil, DCONST_REAL(AC_inv_dsy));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
deryz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil_a[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_a[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
AcReal pencil_b[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_b[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.z + STENCIL_ORDER / 2 - offset)];
|
||||
|
||||
return cross_derivative(pencil_a, pencil_b, DCONST_REAL(AC_inv_dsy),
|
||||
DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y, vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
return first_derivative(pencil, DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derzz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y, vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
return second_derivative(pencil, DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0.2 (Caching functions)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
#include "stencil_assembly.cuh"
|
||||
|
||||
/*
|
||||
typedef struct {
|
||||
AcRealData x;
|
||||
AcRealData y;
|
||||
AcRealData z;
|
||||
} AcReal3Data;
|
||||
|
||||
static __device__ __forceinline__ AcReal3Data
|
||||
read_data(const int i, const int j, const int k,
|
||||
AcReal* __restrict__ buf[], const int3& handle)
|
||||
{
|
||||
AcReal3Data data;
|
||||
|
||||
data.x = read_data(i, j, k, buf, handle.x);
|
||||
data.y = read_data(i, j, k, buf, handle.y);
|
||||
data.z = read_data(i, j, k, buf, handle.z);
|
||||
|
||||
return data;
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0.3 (Built-in functions available during the Stencil Processing Stage)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator-(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
return (AcReal3){a.x - b.x, a.y - b.y, a.z - b.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator+(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
return (AcReal3){a.x + b.x, a.y + b.y, a.z + b.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator-(const AcReal3& a)
|
||||
{
|
||||
return (AcReal3){-a.x, -a.y, -a.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator*(const AcReal a, const AcReal3& b)
|
||||
{
|
||||
return (AcReal3){a * b.x, a * b.y, a * b.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal
|
||||
dot(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
mul(const AcMatrix& aa, const AcReal3& x)
|
||||
{
|
||||
return (AcReal3){dot(aa.row[0], x), dot(aa.row[1], x), dot(aa.row[2], x)};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
cross(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
AcReal3 c;
|
||||
|
||||
c.x = a.y * b.z - a.z * b.y;
|
||||
c.y = a.z * b.x - a.x * b.z;
|
||||
c.z = a.x * b.y - a.y * b.x;
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ bool
|
||||
is_valid(const AcReal a)
|
||||
{
|
||||
return !isnan(a) && !isinf(a);
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ bool
|
||||
is_valid(const AcReal3& a)
|
||||
{
|
||||
return is_valid(a.x) && is_valid(a.y) && is_valid(a.z);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1 (Stencil Processing Stage)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1.1 (Terms)
|
||||
* =============================================================================
|
||||
*/
|
||||
static __device__ __forceinline__ AcReal
|
||||
laplace(const AcRealData& data)
|
||||
{
|
||||
return hessian(data).row[0].x + hessian(data).row[1].y + hessian(data).row[2].z;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
divergence(const AcReal3Data& vec)
|
||||
{
|
||||
return gradient(vec.x).x + gradient(vec.y).y + gradient(vec.z).z;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
laplace_vec(const AcReal3Data& vec)
|
||||
{
|
||||
return (AcReal3){laplace(vec.x), laplace(vec.y), laplace(vec.z)};
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
curl(const AcReal3Data& vec)
|
||||
{
|
||||
return (AcReal3){gradient(vec.z).y - gradient(vec.y).z,
|
||||
gradient(vec.x).z - gradient(vec.z).x,
|
||||
gradient(vec.y).x - gradient(vec.x).y};
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
gradient_of_divergence(const AcReal3Data& vec)
|
||||
{
|
||||
return (AcReal3){hessian(vec.x).row[0].x + hessian(vec.y).row[0].y + hessian(vec.z).row[0].z,
|
||||
hessian(vec.x).row[1].x + hessian(vec.y).row[1].y + hessian(vec.z).row[1].z,
|
||||
hessian(vec.x).row[2].x + hessian(vec.y).row[2].y + hessian(vec.z).row[2].z};
|
||||
}
|
||||
|
||||
// Takes uu gradients and returns S
|
||||
static __device__ __forceinline__ AcMatrix
|
||||
stress_tensor(const AcReal3Data& vec)
|
||||
{
|
||||
AcMatrix S;
|
||||
|
||||
S.row[0].x = AcReal(2. / 3.) * gradient(vec.x).x -
|
||||
AcReal(1. / 3.) * (gradient(vec.y).y + gradient(vec.z).z);
|
||||
S.row[0].y = AcReal(1. / 2.) * (gradient(vec.x).y + gradient(vec.y).x);
|
||||
S.row[0].z = AcReal(1. / 2.) * (gradient(vec.x).z + gradient(vec.z).x);
|
||||
|
||||
S.row[1].y = AcReal(2. / 3.) * gradient(vec.y).y -
|
||||
AcReal(1. / 3.) * (gradient(vec.x).x + gradient(vec.z).z);
|
||||
|
||||
S.row[1].z = AcReal(1. / 2.) * (gradient(vec.y).z + gradient(vec.z).y);
|
||||
|
||||
S.row[2].z = AcReal(2. / 3.) * gradient(vec.z).z -
|
||||
AcReal(1. / 3.) * (gradient(vec.x).x + gradient(vec.y).y);
|
||||
|
||||
S.row[1].x = S.row[0].y;
|
||||
S.row[2].x = S.row[0].z;
|
||||
S.row[2].y = S.row[1].z;
|
||||
|
||||
return S;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
contract(const AcMatrix& mat)
|
||||
{
|
||||
AcReal res = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 3; ++i)
|
||||
res += dot(mat.row[i], mat.row[i]);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1.2 (Equations)
|
||||
* =============================================================================
|
||||
*/
|
||||
static __device__ __forceinline__ AcReal
|
||||
length(const AcReal3& vec)
|
||||
{
|
||||
return sqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
reciprocal_len(const AcReal3& vec)
|
||||
{
|
||||
return rsqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
normalized(const AcReal3& vec)
|
||||
{
|
||||
const AcReal inv_len = reciprocal_len(vec);
|
||||
return inv_len * vec;
|
||||
}
|
||||
|
||||
// Sinusoidal forcing
|
||||
// https://arxiv.org/pdf/1704.04676.pdf
|
||||
__constant__ AcReal3 forcing_vec;
|
||||
__constant__ AcReal forcing_phi;
|
||||
static __device__ __forceinline__ AcReal3
|
||||
forcing(const int i, const int j, const int k)
|
||||
{
|
||||
#define DOMAIN_SIZE_X (DCONST_INT(AC_nx) * DCONST_REAL(AC_dsx))
|
||||
#define DOMAIN_SIZE_Y (DCONST_INT(AC_ny) * DCONST_REAL(AC_dsy))
|
||||
#define DOMAIN_SIZE_Z (DCONST_INT(AC_nz) * DCONST_REAL(AC_dsz))
|
||||
const AcReal3 k_vec = (AcReal3){(i - DCONST_INT(AC_nx_min)) * DCONST_REAL(AC_dsx) - AcReal(.5) * DOMAIN_SIZE_X,
|
||||
(j - DCONST_INT(AC_ny_min)) * DCONST_REAL(AC_dsy) - AcReal(.5) * DOMAIN_SIZE_Y,
|
||||
(k - DCONST_INT(AC_nz_min)) * DCONST_REAL(AC_dsz) - AcReal(.5) * DOMAIN_SIZE_Z};
|
||||
AcReal inv_len = reciprocal_len(k_vec);
|
||||
if (isnan(inv_len) || isinf(inv_len))
|
||||
inv_len = 0;
|
||||
if (inv_len > 2) // hack to make it cool
|
||||
inv_len = 2;
|
||||
const AcReal k_dot_x = dot(k_vec, forcing_vec);
|
||||
|
||||
const AcReal waves = cos(k_dot_x)*cos(forcing_phi) - sin(k_dot_x) * sin(forcing_phi);
|
||||
|
||||
return inv_len * inv_len * waves * forcing_vec;
|
||||
}
|
||||
|
||||
|
||||
// Note: LNT0 and LNRHO0 must be set very carefully: if the magnitude is different that other values in the mesh, then we will inherently lose precision
|
||||
#define LNT0 (AcReal(0.0))
|
||||
#define LNRHO0 (AcReal(0.0))
|
||||
|
||||
#define H_CONST (AcReal(0.0))
|
||||
#define C_CONST (AcReal(0.0))
|
||||
|
||||
|
||||
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal
|
||||
rk3_integrate(const AcReal state_previous, const AcReal state_current,
|
||||
const AcReal rate_of_change, const AcReal dt)
|
||||
{
|
||||
// Williamson (1980)
|
||||
const AcReal alpha[] = {0, AcReal(.0), AcReal(-5. / 9.), AcReal(-153. / 128.)};
|
||||
const AcReal beta[] = {0, AcReal(1. / 3.), AcReal(15. / 16.),
|
||||
AcReal(8. / 15.)};
|
||||
|
||||
|
||||
// Note the indexing: +1 to avoid an unnecessary warning about "out-of-bounds"
|
||||
// access (when accessing beta[step_number-1] even when step_number >= 1)
|
||||
switch (step_number) {
|
||||
case 0:
|
||||
return state_current + beta[step_number + 1] * rate_of_change * dt;
|
||||
case 1: // Fallthrough
|
||||
case 2:
|
||||
return state_current +
|
||||
beta[step_number + 1] *
|
||||
(alpha[step_number + 1] * (AcReal(1.) / beta[step_number]) *
|
||||
(state_current - state_previous) +
|
||||
rate_of_change * dt);
|
||||
default:
|
||||
return NAN;
|
||||
}
|
||||
}
|
||||
/*
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal
|
||||
rk3_integrate_scal(const AcReal state_previous, const AcReal state_current,
|
||||
const AcReal rate_of_change, const AcReal dt)
|
||||
{
|
||||
// Williamson (1980)
|
||||
const AcReal alpha[] = {AcReal(.0), AcReal(-5. / 9.), AcReal(-153. / 128.)};
|
||||
const AcReal beta[] = {AcReal(1. / 3.), AcReal(15. / 16.),
|
||||
AcReal(8. / 15.)};
|
||||
|
||||
|
||||
switch (step_number) {
|
||||
case 0:
|
||||
return state_current + beta[step_number] * rate_of_change * dt;
|
||||
case 1: // Fallthrough
|
||||
case 2:
|
||||
return state_current +
|
||||
beta[step_number] *
|
||||
(alpha[step_number] * (AcReal(1.) / beta[step_number - 1]) *
|
||||
(state_current - state_previous) +
|
||||
rate_of_change * dt);
|
||||
default:
|
||||
return NAN;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal3
|
||||
rk3_integrate(const AcReal3 state_previous, const AcReal3 state_current,
|
||||
const AcReal3 rate_of_change, const AcReal dt)
|
||||
{
|
||||
return (AcReal3) { rk3_integrate<step_number>(state_previous.x, state_current.x, rate_of_change.x, dt),
|
||||
rk3_integrate<step_number>(state_previous.y, state_current.y, rate_of_change.y, dt),
|
||||
rk3_integrate<step_number>(state_previous.z, state_current.z, rate_of_change.z, dt)};
|
||||
}
|
||||
|
||||
#define rk3(state_previous, state_current, rate_of_change, dt)\
|
||||
rk3_integrate<step_number>(state_previous, value(state_current), rate_of_change, dt)
|
||||
|
||||
/*
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal
|
||||
rk3_integrate(const int idx, const AcReal out, const int handle,
|
||||
const AcRealData& in_cached, const AcReal rate_of_change, const AcReal dt)
|
||||
{
|
||||
return rk3_integrate_scal<step_number>(out, value(in_cached), rate_of_change, dt);
|
||||
}
|
||||
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal3
|
||||
rk3_integrate(const int idx, const AcReal3 out, const int3& handle,
|
||||
const AcReal3Data& in_cached, const AcReal3& rate_of_change, const AcReal dt)
|
||||
{
|
||||
return (AcReal3) {
|
||||
rk3_integrate<step_number>(idx, out, handle.x, in_cached.x, rate_of_change.x, dt),
|
||||
rk3_integrate<step_number>(idx, out, handle.y, in_cached.y, rate_of_change.y, dt),
|
||||
rk3_integrate<step_number>(idx, out, handle.z, in_cached.z, rate_of_change.z, dt)
|
||||
};
|
||||
}
|
||||
|
||||
#define RK3(handle, in_cached, rate_of_change, dt) \
|
||||
rk3_integrate<step_number>(idx, buffer.out, handle, in_cached, rate_of_change, dt)
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1.3 (Kernels)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static __device__ void
|
||||
write(AcReal* __restrict__ out[], const int handle, const int idx, const AcReal value)
|
||||
{
|
||||
out[handle][idx] = value;
|
||||
}
|
||||
|
||||
static __device__ void
|
||||
write(AcReal* __restrict__ out[], const int3 vec, const int idx, const AcReal3 value)
|
||||
{
|
||||
write(out, vec.x, idx, value.x);
|
||||
write(out, vec.y, idx, value.y);
|
||||
write(out, vec.z, idx, value.z);
|
||||
}
|
||||
|
||||
static __device__ AcReal
|
||||
read_out(const int idx, AcReal* __restrict__ field[], const int handle)
|
||||
{
|
||||
return field[handle][idx];
|
||||
}
|
||||
|
||||
static __device__ AcReal3
|
||||
read_out(const int idx, AcReal* __restrict__ field[], const int3 handle)
|
||||
{
|
||||
return (AcReal3) { read_out(idx, field, handle.x),
|
||||
read_out(idx, field, handle.y),
|
||||
read_out(idx, field, handle.z) };
|
||||
}
|
||||
|
||||
#define WRITE_OUT(handle, value) (write(buffer.out, handle, idx, value))
|
||||
#define READ(handle) (read_data(vertexIdx, buffer.in, handle))
|
||||
#define READ_OUT(handle) (read_out(idx, buffer.out, handle))
|
||||
|
||||
// also write for clarity here also, not for the DSL
|
||||
//#define WRITE(HANDLE) (write(idx, ...)) s.t. we don't have to insert boilerplat in the mid of the function
|
||||
|
||||
#define GEN_KERNEL_PARAM_BOILERPLATE \
|
||||
const int3 start, const int3 end, VertexBufferArray buffer
|
||||
|
||||
#define GEN_KERNEL_BUILTIN_VARIABLES_BOILERPLATE() \
|
||||
const int3 vertexIdx = (int3){threadIdx.x + blockIdx.x * blockDim.x + start.x,\
|
||||
threadIdx.y + blockIdx.y * blockDim.y + start.y,\
|
||||
threadIdx.z + blockIdx.z * blockDim.z + start.z};\
|
||||
if (vertexIdx.x >= end.x || vertexIdx.y >= end.y || vertexIdx.z >= end.z)\
|
||||
return;\
|
||||
\
|
||||
\
|
||||
assert(vertexIdx.x < DCONST_INT(AC_nx_max) && vertexIdx.y < DCONST_INT(AC_ny_max) &&\
|
||||
vertexIdx.z < DCONST_INT(AC_nz_max));\
|
||||
\
|
||||
assert(vertexIdx.x >= DCONST_INT(AC_nx_min) && vertexIdx.y >= DCONST_INT(AC_ny_min) &&\
|
||||
vertexIdx.z >= DCONST_INT(AC_nz_min));\
|
||||
\
|
||||
const int idx = IDX(vertexIdx.x, vertexIdx.y, vertexIdx.z);
|
||||
|
||||
#include "stencil_process.cuh"
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 2 (Host calls)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static AcReal
|
||||
randf(void)
|
||||
{
|
||||
return AcReal(rand()) / AcReal(RAND_MAX);
|
||||
}
|
||||
|
||||
AcResult
|
||||
rk3_step_async(const cudaStream_t stream, const int& step_number, const int3& start, const int3& end,
|
||||
const AcReal dt, VertexBufferArray* buffer)
|
||||
{
|
||||
const dim3 tpb(32, 1, 4);
|
||||
/////////////////// Forcing
|
||||
#if LFORCING
|
||||
const AcReal ff_scale = AcReal(.2);
|
||||
static AcReal3 ff = ff_scale * (AcReal3){1, 0, 0};
|
||||
const AcReal radians = randf() * AcReal(2*M_PI) / 360 / 8;
|
||||
const AcMatrix rotz = create_rotz(radians);
|
||||
ff = mul(rotz, ff);
|
||||
cudaMemcpyToSymbolAsync(forcing_vec, &ff, sizeof(ff), 0, cudaMemcpyHostToDevice, stream);
|
||||
|
||||
const AcReal ff_phi = AcReal(M_PI);//AcReal(2 * M_PI) * randf();
|
||||
cudaMemcpyToSymbolAsync(forcing_phi, &ff_phi, sizeof(ff_phi), 0, cudaMemcpyHostToDevice, stream);
|
||||
#endif // LFORCING
|
||||
//////////////////////////
|
||||
|
||||
const int nx = end.x - start.x;
|
||||
const int ny = end.y - start.y;
|
||||
const int nz = end.z - start.z;
|
||||
|
||||
const dim3 bpg(
|
||||
(unsigned int)ceil(nx / AcReal(tpb.x)),
|
||||
(unsigned int)ceil(ny / AcReal(tpb.y)),
|
||||
(unsigned int)ceil(nz / AcReal(tpb.z)));
|
||||
|
||||
|
||||
if (step_number == 0)
|
||||
solve<0><<<bpg, tpb, 0, stream>>>(start, end, *buffer, dt);
|
||||
else if (step_number == 1)
|
||||
solve<1><<<bpg, tpb, 0, stream>>>(start, end, *buffer, dt);
|
||||
else
|
||||
solve<2><<<bpg, tpb, 0, stream>>>(start, end, *buffer, dt);
|
||||
|
||||
ERRCHK_CUDA_KERNEL();
|
||||
return AC_SUCCESS;
|
||||
}
|
338
src/core/kernels/reduce.cuh
Normal file
338
src/core/kernels/reduce.cuh
Normal file
@@ -0,0 +1,338 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "device_globals.cuh"
|
||||
|
||||
#include "src/core/errchk.h"
|
||||
#include "src/core/math_utils.h"
|
||||
|
||||
// Function pointer definitions
|
||||
typedef AcReal (*ReduceFunc)(const AcReal&, const AcReal&);
|
||||
typedef AcReal (*ReduceInitialScalFunc)(const AcReal&);
|
||||
typedef AcReal (*ReduceInitialVecFunc)(const AcReal&, const AcReal&,
|
||||
const AcReal&);
|
||||
|
||||
// clang-format off
|
||||
/* Comparison funcs */
|
||||
__device__ inline AcReal
|
||||
_device_max(const AcReal& a, const AcReal& b) { return a > b ? a : b; }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_min(const AcReal& a, const AcReal& b) { return a < b ? a : b; }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_sum(const AcReal& a, const AcReal& b) { return a + b; }
|
||||
|
||||
/* Function used to determine the values used during reduction */
|
||||
__device__ inline AcReal
|
||||
_device_length_scal(const AcReal& a) { return AcReal(a); }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_squared_scal(const AcReal& a) { return (AcReal)(a*a); }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_exp_squared_scal(const AcReal& a) { return exp(a)*exp(a); }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_length_vec(const AcReal& a, const AcReal& b, const AcReal& c) { return sqrt(a*a + b*b + c*c); }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_squared_vec(const AcReal& a, const AcReal& b, const AcReal& c) { return _device_squared_scal(a) + _device_squared_scal(b) + _device_squared_scal(c); }
|
||||
|
||||
__device__ inline AcReal
|
||||
_device_exp_squared_vec(const AcReal& a, const AcReal& b, const AcReal& c) { return _device_exp_squared_scal(a) + _device_exp_squared_scal(b) + _device_exp_squared_scal(c); }
|
||||
// clang-format on
|
||||
|
||||
__device__ inline bool
|
||||
oob(const int& i, const int& j, const int& k)
|
||||
{
|
||||
if (i >= d_mesh_info.int_params[AC_nx] ||
|
||||
j >= d_mesh_info.int_params[AC_ny] ||
|
||||
k >= d_mesh_info.int_params[AC_nz])
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
template <ReduceInitialScalFunc reduce_initial>
|
||||
__global__ void
|
||||
_kernel_reduce_scal(const __restrict__ AcReal* src, AcReal* dst)
|
||||
{
|
||||
const int i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
const int j = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
const int k = threadIdx.z + blockIdx.z * blockDim.z;
|
||||
|
||||
if (oob(i, j, k))
|
||||
return;
|
||||
|
||||
const int src_idx = DEVICE_VTXBUF_IDX(
|
||||
i + d_mesh_info.int_params[AC_nx_min],
|
||||
j + d_mesh_info.int_params[AC_ny_min],
|
||||
k + d_mesh_info.int_params[AC_nz_min]);
|
||||
const int dst_idx = DEVICE_1D_COMPDOMAIN_IDX(i, j, k);
|
||||
|
||||
dst[dst_idx] = reduce_initial(src[src_idx]);
|
||||
}
|
||||
|
||||
template <ReduceInitialVecFunc reduce_initial>
|
||||
__global__ void
|
||||
_kernel_reduce_vec(const __restrict__ AcReal* src_a,
|
||||
const __restrict__ AcReal* src_b,
|
||||
const __restrict__ AcReal* src_c, AcReal* dst)
|
||||
{
|
||||
const int i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
const int j = threadIdx.y + blockIdx.y * blockDim.y;
|
||||
const int k = threadIdx.z + blockIdx.z * blockDim.z;
|
||||
|
||||
if (oob(i, j, k))
|
||||
return;
|
||||
|
||||
const int src_idx = DEVICE_VTXBUF_IDX(
|
||||
i + d_mesh_info.int_params[AC_nx_min],
|
||||
j + d_mesh_info.int_params[AC_ny_min],
|
||||
k + d_mesh_info.int_params[AC_nz_min]);
|
||||
const int dst_idx = DEVICE_1D_COMPDOMAIN_IDX(i, j, k);
|
||||
|
||||
dst[dst_idx] = reduce_initial(src_a[src_idx], src_b[src_idx],
|
||||
src_c[src_idx]);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
#define BLOCK_SIZE (1024)
|
||||
#define ELEMS_PER_THREAD (32)
|
||||
|
||||
template <ReduceFunc reduce>
|
||||
__global__ void
|
||||
_kernel_reduce(AcReal* src, AcReal* result)
|
||||
{
|
||||
const int idx = threadIdx.x + blockIdx.x * BLOCK_SIZE * ELEMS_PER_THREAD;
|
||||
const int scratchpad_size = DCONST_INT(AC_nxyz);
|
||||
|
||||
if (idx >= scratchpad_size)
|
||||
return;
|
||||
|
||||
__shared__ AcReal smem[BLOCK_SIZE];
|
||||
|
||||
AcReal tmp = src[idx];
|
||||
|
||||
for (int i = 1; i < ELEMS_PER_THREAD; ++i) {
|
||||
const int src_idx = idx + i * BLOCK_SIZE;
|
||||
if (src_idx >= scratchpad_size) {
|
||||
// This check is for safety: if accessing uninitialized values
|
||||
// beyond the mesh boundaries, we will immediately start seeing NANs
|
||||
if (threadIdx.x < BLOCK_SIZE)
|
||||
smem[threadIdx.x] = NAN;
|
||||
else
|
||||
break;
|
||||
}
|
||||
tmp = reduce(tmp, src[src_idx]);
|
||||
}
|
||||
|
||||
smem[threadIdx.x] = tmp;
|
||||
__syncthreads();
|
||||
|
||||
int offset = BLOCK_SIZE / 2;
|
||||
while (offset > 0) {
|
||||
|
||||
if (threadIdx.x < offset) {
|
||||
tmp = reduce(tmp, smem[threadIdx.x + offset]);
|
||||
smem[threadIdx.x] = tmp;
|
||||
}
|
||||
offset /= 2;
|
||||
__syncthreads();
|
||||
}
|
||||
if (threadIdx.x == 0)
|
||||
src[idx] = tmp;
|
||||
}
|
||||
|
||||
template <ReduceFunc reduce>
|
||||
__global__ void
|
||||
_kernel_reduce_block(const __restrict__ AcReal* src, AcReal* result)
|
||||
{
|
||||
const int scratchpad_size = DCONST_INT(AC_nxyz);
|
||||
const int idx = threadIdx.x + blockIdx.x * BLOCK_SIZE * ELEMS_PER_THREAD;
|
||||
AcReal tmp = src[idx];
|
||||
const int block_offset = BLOCK_SIZE * ELEMS_PER_THREAD;
|
||||
for (int i = 1; idx + i * block_offset < scratchpad_size; ++i)
|
||||
tmp = reduce(tmp, src[idx + i * block_offset]);
|
||||
|
||||
*result = tmp;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
AcReal
|
||||
_reduce_scal(const cudaStream_t stream,
|
||||
const ReductionType& rtype, const int& nx, const int& ny,
|
||||
const int& nz, const AcReal* vertex_buffer,
|
||||
AcReal* reduce_scratchpad, AcReal* reduce_result)
|
||||
{
|
||||
bool solve_mean = false;
|
||||
|
||||
const dim3 tpb(32, 4, 1);
|
||||
const dim3 bpg(int(ceil(AcReal(nx) / tpb.x)), int(ceil(AcReal(ny) / tpb.y)),
|
||||
int(ceil(AcReal(nz) / tpb.z)));
|
||||
|
||||
const int scratchpad_size = nx * ny * nz;
|
||||
const int bpg2 = (unsigned int)ceil(AcReal(scratchpad_size) /
|
||||
AcReal(ELEMS_PER_THREAD * BLOCK_SIZE));
|
||||
|
||||
switch (rtype) {
|
||||
case RTYPE_MAX:
|
||||
_kernel_reduce_scal<_device_length_scal>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer, reduce_scratchpad);
|
||||
_kernel_reduce<_device_max>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_max>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
break;
|
||||
case RTYPE_MIN:
|
||||
_kernel_reduce_scal<_device_length_scal>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer, reduce_scratchpad);
|
||||
_kernel_reduce<_device_min>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_min>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
break;
|
||||
case RTYPE_RMS:
|
||||
_kernel_reduce_scal<_device_squared_scal>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer, reduce_scratchpad);
|
||||
_kernel_reduce<_device_sum>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_sum>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
solve_mean = true;
|
||||
break;
|
||||
case RTYPE_RMS_EXP:
|
||||
_kernel_reduce_scal<_device_exp_squared_scal>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer, reduce_scratchpad);
|
||||
_kernel_reduce<_device_sum>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_sum>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
solve_mean = true;
|
||||
break;
|
||||
default:
|
||||
ERROR("Unrecognized RTYPE");
|
||||
}
|
||||
|
||||
AcReal result;
|
||||
cudaMemcpy(&result, reduce_result, sizeof(AcReal), cudaMemcpyDeviceToHost);
|
||||
if (solve_mean) {
|
||||
const AcReal inv_n = AcReal(1.0) / (nx * ny * nz);
|
||||
return inv_n * result;
|
||||
}
|
||||
else {
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
AcReal
|
||||
_reduce_vec(const cudaStream_t stream,
|
||||
const ReductionType& rtype, const int& nx, const int& ny,
|
||||
const int& nz, const AcReal* vertex_buffer_a,
|
||||
const AcReal* vertex_buffer_b, const AcReal* vertex_buffer_c,
|
||||
AcReal* reduce_scratchpad, AcReal* reduce_result)
|
||||
{
|
||||
bool solve_mean = false;
|
||||
|
||||
const dim3 tpb(32, 4, 1);
|
||||
const dim3 bpg(int(ceil(float(nx) / tpb.x)),
|
||||
int(ceil(float(ny) / tpb.y)),
|
||||
int(ceil(float(nz) / tpb.z)));
|
||||
|
||||
const int scratchpad_size = nx * ny * nz;
|
||||
const int bpg2 = (unsigned int)ceil(float(scratchpad_size) /
|
||||
float(ELEMS_PER_THREAD * BLOCK_SIZE));
|
||||
|
||||
// "Features" of this quick & efficient reduction:
|
||||
// Block size must be smaller than the computational domain size
|
||||
// (otherwise we would have do some additional bounds checking in the
|
||||
// second half of _kernel_reduce, which gets quite confusing)
|
||||
// Also the BLOCK_SIZE must be a multiple of two s.t. we can easily split
|
||||
// the work without worrying too much about the array bounds.
|
||||
ERRCHK(BLOCK_SIZE <= scratchpad_size);
|
||||
ERRCHK(!(BLOCK_SIZE % 2));
|
||||
// NOTE! Also does not work properly with non-power of two mesh dimension
|
||||
// Issue is with "smem[BLOCK_SIZE];". If you init smem to NANs, you can
|
||||
// see that uninitialized smem values are used in the comparison
|
||||
ERRCHK(is_power_of_two(nx));
|
||||
ERRCHK(is_power_of_two(ny));
|
||||
ERRCHK(is_power_of_two(nz));
|
||||
|
||||
switch (rtype) {
|
||||
case RTYPE_MAX:
|
||||
_kernel_reduce_vec<_device_length_vec>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer_a, vertex_buffer_b, vertex_buffer_c,
|
||||
reduce_scratchpad);
|
||||
_kernel_reduce<_device_max>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_max>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
break;
|
||||
case RTYPE_MIN:
|
||||
_kernel_reduce_vec<_device_length_vec>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer_a, vertex_buffer_b, vertex_buffer_c,
|
||||
reduce_scratchpad);
|
||||
_kernel_reduce<_device_min>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_min>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
break;
|
||||
case RTYPE_RMS:
|
||||
_kernel_reduce_vec<_device_squared_vec>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer_a, vertex_buffer_b, vertex_buffer_c,
|
||||
reduce_scratchpad);
|
||||
_kernel_reduce<_device_sum>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_sum>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
solve_mean = true;
|
||||
break;
|
||||
case RTYPE_RMS_EXP:
|
||||
_kernel_reduce_vec<_device_exp_squared_vec>
|
||||
<<<bpg, tpb, 0, stream>>>(vertex_buffer_a, vertex_buffer_b, vertex_buffer_c,
|
||||
reduce_scratchpad);
|
||||
_kernel_reduce<_device_sum>
|
||||
<<<bpg2, BLOCK_SIZE, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
_kernel_reduce_block<_device_sum>
|
||||
<<<1, 1, 0, stream>>>(reduce_scratchpad, reduce_result);
|
||||
solve_mean = true;
|
||||
break;
|
||||
default:
|
||||
ERROR("Unrecognized RTYPE");
|
||||
}
|
||||
|
||||
AcReal result;
|
||||
cudaMemcpy(&result, reduce_result, sizeof(AcReal), cudaMemcpyDeviceToHost);
|
||||
if (solve_mean) {
|
||||
const AcReal inv_n = AcReal(1.0) / (nx * ny * nz);
|
||||
return inv_n * result;
|
||||
}
|
||||
else {
|
||||
return result;
|
||||
}
|
||||
}
|
742
src/core/kernels/rk3.cuh
Normal file
742
src/core/kernels/rk3.cuh
Normal file
@@ -0,0 +1,742 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Implementation of the integration pipeline
|
||||
*
|
||||
*
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "device_globals.cuh"
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
/*
|
||||
#define RK_THREADS_X (32)
|
||||
#define RK_THREADS_Y (1)
|
||||
#define RK_THREADS_Z (4)
|
||||
#define RK_LAUNCH_BOUND_MIN_BLOCKS (4)
|
||||
#define RK_THREADBLOCK_SIZE (RK_THREADS_X * RK_THREADS_Y * RK_THREADS_Z)
|
||||
*/
|
||||
|
||||
static __device__ __forceinline__ int
|
||||
IDX(const int i)
|
||||
{
|
||||
return i;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int
|
||||
IDX(const int i, const int j, const int k)
|
||||
{
|
||||
return DEVICE_VTXBUF_IDX(i, j, k);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int
|
||||
IDX(const int3 idx)
|
||||
{
|
||||
return DEVICE_VTXBUF_IDX(idx.x, idx.y, idx.z);
|
||||
}
|
||||
|
||||
static __forceinline__ AcMatrix
|
||||
create_rotz(const AcReal radians)
|
||||
{
|
||||
AcMatrix mat;
|
||||
|
||||
mat.row[0] = (AcReal3){cos(radians), -sin(radians), 0};
|
||||
mat.row[1] = (AcReal3){sin(radians), cos(radians), 0};
|
||||
mat.row[2] = (AcReal3){0, 0, 0};
|
||||
|
||||
return mat;
|
||||
}
|
||||
|
||||
|
||||
#if AC_DOUBLE_PRECISION == 0
|
||||
#define sin __sinf
|
||||
#define cos __cosf
|
||||
#define exp __expf
|
||||
#define rsqrt rsqrtf // hardware reciprocal sqrt
|
||||
#endif // AC_DOUBLE_PRECISION == 0
|
||||
|
||||
|
||||
/*
|
||||
typedef struct {
|
||||
int i, j, k;
|
||||
} int3;*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0 (Input Assembly Stage)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0.1 (Read stencil elements and solve derivatives)
|
||||
* =============================================================================
|
||||
*/
|
||||
static __device__ __forceinline__ AcReal
|
||||
first_derivative(const AcReal* __restrict__ pencil, const AcReal inv_ds)
|
||||
{
|
||||
#if STENCIL_ORDER == 2
|
||||
const AcReal coefficients[] = {0, 1.0 / 2.0};
|
||||
#elif STENCIL_ORDER == 4
|
||||
const AcReal coefficients[] = {0, 2.0 / 3.0, -1.0 / 12.0};
|
||||
#elif STENCIL_ORDER == 6
|
||||
const AcReal coefficients[] = {0, 3.0 / 4.0, -3.0 / 20.0, 1.0 / 60.0};
|
||||
#elif STENCIL_ORDER == 8
|
||||
const AcReal coefficients[] = {0, 4.0 / 5.0, -1.0 / 5.0, 4.0 / 105.0,
|
||||
-1.0 / 280.0};
|
||||
#endif
|
||||
|
||||
#define MID (STENCIL_ORDER / 2)
|
||||
AcReal res = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= MID; ++i)
|
||||
res += coefficients[i] * (pencil[MID + i] - pencil[MID - i]);
|
||||
|
||||
return res * inv_ds;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
second_derivative(const AcReal* __restrict__ pencil, const AcReal inv_ds)
|
||||
{
|
||||
#if STENCIL_ORDER == 2
|
||||
const AcReal coefficients[] = {-2., 1.};
|
||||
#elif STENCIL_ORDER == 4
|
||||
const AcReal coefficients[] = {-5.0/2.0, 4.0/3.0, -1.0/12.0};
|
||||
#elif STENCIL_ORDER == 6
|
||||
const AcReal coefficients[] = {-49.0 / 18.0, 3.0 / 2.0, -3.0 / 20.0,
|
||||
1.0 / 90.0};
|
||||
#elif STENCIL_ORDER == 8
|
||||
const AcReal coefficients[] = {-205.0 / 72.0, 8.0 / 5.0, -1.0 / 5.0,
|
||||
8.0 / 315.0, -1.0 / 560.0};
|
||||
#endif
|
||||
|
||||
#define MID (STENCIL_ORDER / 2)
|
||||
AcReal res = coefficients[0] * pencil[MID];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= MID; ++i)
|
||||
res += coefficients[i] * (pencil[MID + i] + pencil[MID - i]);
|
||||
|
||||
return res * inv_ds * inv_ds;
|
||||
}
|
||||
|
||||
/** inv_ds: inverted mesh spacing f.ex. 1. / mesh.int_params[AC_dsx] */
|
||||
static __device__ __forceinline__ AcReal
|
||||
cross_derivative(const AcReal* __restrict__ pencil_a,
|
||||
const AcReal* __restrict__ pencil_b, const AcReal inv_ds_a,
|
||||
const AcReal inv_ds_b)
|
||||
{
|
||||
#if STENCIL_ORDER == 2
|
||||
const AcReal coefficients[] = {0, 1.0 / 4.0};
|
||||
#elif STENCIL_ORDER == 4
|
||||
const AcReal coefficients[] = {0, 1.0 / 32.0, 1.0 / 64.0}; // TODO correct coefficients, these are just placeholders
|
||||
#elif STENCIL_ORDER == 6
|
||||
const AcReal fac = (1. / 720.);
|
||||
const AcReal coefficients[] = {0.0 * fac, 270.0 * fac, -27.0 * fac,
|
||||
2.0 * fac};
|
||||
#elif STENCIL_ORDER == 8
|
||||
const AcReal fac = (1. / 20160.);
|
||||
const AcReal coefficients[] = {0.0 * fac, 8064. * fac, -1008. * fac,
|
||||
128. * fac, -9. * fac};
|
||||
#endif
|
||||
|
||||
#define MID (STENCIL_ORDER / 2)
|
||||
AcReal res = AcReal(0.);
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= MID; ++i) {
|
||||
res += coefficients[i] * (pencil_a[MID + i] + pencil_a[MID - i] -
|
||||
pencil_b[MID + i] - pencil_b[MID - i]);
|
||||
}
|
||||
return res * inv_ds_a * inv_ds_b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derx(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y, vertexIdx.z)];
|
||||
|
||||
return first_derivative(pencil, DCONST_REAL(AC_inv_dsx));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derxx(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y, vertexIdx.z)];
|
||||
|
||||
return second_derivative(pencil, DCONST_REAL(AC_inv_dsx));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derxy(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil_a[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_a[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.y + offset - STENCIL_ORDER / 2, vertexIdx.z)];
|
||||
|
||||
AcReal pencil_b[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_b[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.y + STENCIL_ORDER / 2 - offset, vertexIdx.z)];
|
||||
|
||||
return cross_derivative(pencil_a, pencil_b, DCONST_REAL(AC_inv_dsx),
|
||||
DCONST_REAL(AC_inv_dsy));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derxz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil_a[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_a[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y,
|
||||
vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
AcReal pencil_b[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_b[offset] = arr[IDX(vertexIdx.x + offset - STENCIL_ORDER / 2, vertexIdx.y,
|
||||
vertexIdx.z + STENCIL_ORDER / 2 - offset)];
|
||||
|
||||
return cross_derivative(pencil_a, pencil_b, DCONST_REAL(AC_inv_dsx),
|
||||
DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
dery(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2, vertexIdx.z)];
|
||||
|
||||
return first_derivative(pencil, DCONST_REAL(AC_inv_dsy));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
deryy(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2, vertexIdx.z)];
|
||||
|
||||
return second_derivative(pencil, DCONST_REAL(AC_inv_dsy));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
deryz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil_a[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_a[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
AcReal pencil_b[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil_b[offset] = arr[IDX(vertexIdx.x, vertexIdx.y + offset - STENCIL_ORDER / 2,
|
||||
vertexIdx.z + STENCIL_ORDER / 2 - offset)];
|
||||
|
||||
return cross_derivative(pencil_a, pencil_b, DCONST_REAL(AC_inv_dsy),
|
||||
DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y, vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
return first_derivative(pencil, DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
derzz(const int3 vertexIdx, const AcReal* __restrict__ arr)
|
||||
{
|
||||
AcReal pencil[STENCIL_ORDER + 1];
|
||||
#pragma unroll
|
||||
for (int offset = 0; offset < STENCIL_ORDER + 1; ++offset)
|
||||
pencil[offset] = arr[IDX(vertexIdx.x, vertexIdx.y, vertexIdx.z + offset - STENCIL_ORDER / 2)];
|
||||
|
||||
return second_derivative(pencil, DCONST_REAL(AC_inv_dsz));
|
||||
}
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0.2 (Caching functions)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
#include "stencil_assembly.cuh"
|
||||
|
||||
/*
|
||||
typedef struct {
|
||||
AcRealData x;
|
||||
AcRealData y;
|
||||
AcRealData z;
|
||||
} AcReal3Data;
|
||||
|
||||
static __device__ __forceinline__ AcReal3Data
|
||||
read_data(const int i, const int j, const int k,
|
||||
AcReal* __restrict__ buf[], const int3& handle)
|
||||
{
|
||||
AcReal3Data data;
|
||||
|
||||
data.x = read_data(i, j, k, buf, handle.x);
|
||||
data.y = read_data(i, j, k, buf, handle.y);
|
||||
data.z = read_data(i, j, k, buf, handle.z);
|
||||
|
||||
return data;
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 0.3 (Built-in functions available during the Stencil Processing Stage)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator-(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
return (AcReal3){a.x - b.x, a.y - b.y, a.z - b.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator+(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
return (AcReal3){a.x + b.x, a.y + b.y, a.z + b.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator-(const AcReal3& a)
|
||||
{
|
||||
return (AcReal3){-a.x, -a.y, -a.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
operator*(const AcReal a, const AcReal3& b)
|
||||
{
|
||||
return (AcReal3){a * b.x, a * b.y, a * b.z};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal
|
||||
dot(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
mul(const AcMatrix& aa, const AcReal3& x)
|
||||
{
|
||||
return (AcReal3){dot(aa.row[0], x), dot(aa.row[1], x), dot(aa.row[2], x)};
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ AcReal3
|
||||
cross(const AcReal3& a, const AcReal3& b)
|
||||
{
|
||||
AcReal3 c;
|
||||
|
||||
c.x = a.y * b.z - a.z * b.y;
|
||||
c.y = a.z * b.x - a.x * b.z;
|
||||
c.z = a.x * b.y - a.y * b.x;
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ bool
|
||||
is_valid(const AcReal a)
|
||||
{
|
||||
return !isnan(a) && !isinf(a);
|
||||
}
|
||||
|
||||
static __host__ __device__ __forceinline__ bool
|
||||
is_valid(const AcReal3& a)
|
||||
{
|
||||
return is_valid(a.x) && is_valid(a.y) && is_valid(a.z);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1 (Stencil Processing Stage)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1.1 (Terms)
|
||||
* =============================================================================
|
||||
*/
|
||||
static __device__ __forceinline__ AcReal
|
||||
laplace(const AcRealData& data)
|
||||
{
|
||||
return hessian(data).row[0].x + hessian(data).row[1].y + hessian(data).row[2].z;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
divergence(const AcReal3Data& vec)
|
||||
{
|
||||
return gradient(vec.x).x + gradient(vec.y).y + gradient(vec.z).z;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
laplace_vec(const AcReal3Data& vec)
|
||||
{
|
||||
return (AcReal3){laplace(vec.x), laplace(vec.y), laplace(vec.z)};
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
curl(const AcReal3Data& vec)
|
||||
{
|
||||
return (AcReal3){gradient(vec.z).y - gradient(vec.y).z,
|
||||
gradient(vec.x).z - gradient(vec.z).x,
|
||||
gradient(vec.y).x - gradient(vec.x).y};
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
gradient_of_divergence(const AcReal3Data& vec)
|
||||
{
|
||||
return (AcReal3){hessian(vec.x).row[0].x + hessian(vec.y).row[0].y + hessian(vec.z).row[0].z,
|
||||
hessian(vec.x).row[1].x + hessian(vec.y).row[1].y + hessian(vec.z).row[1].z,
|
||||
hessian(vec.x).row[2].x + hessian(vec.y).row[2].y + hessian(vec.z).row[2].z};
|
||||
}
|
||||
|
||||
// Takes uu gradients and returns S
|
||||
static __device__ __forceinline__ AcMatrix
|
||||
stress_tensor(const AcReal3Data& vec)
|
||||
{
|
||||
AcMatrix S;
|
||||
|
||||
S.row[0].x = AcReal(2. / 3.) * gradient(vec.x).x -
|
||||
AcReal(1. / 3.) * (gradient(vec.y).y + gradient(vec.z).z);
|
||||
S.row[0].y = AcReal(1. / 2.) * (gradient(vec.x).y + gradient(vec.y).x);
|
||||
S.row[0].z = AcReal(1. / 2.) * (gradient(vec.x).z + gradient(vec.z).x);
|
||||
|
||||
S.row[1].y = AcReal(2. / 3.) * gradient(vec.y).y -
|
||||
AcReal(1. / 3.) * (gradient(vec.x).x + gradient(vec.z).z);
|
||||
|
||||
S.row[1].z = AcReal(1. / 2.) * (gradient(vec.y).z + gradient(vec.z).y);
|
||||
|
||||
S.row[2].z = AcReal(2. / 3.) * gradient(vec.z).z -
|
||||
AcReal(1. / 3.) * (gradient(vec.x).x + gradient(vec.y).y);
|
||||
|
||||
S.row[1].x = S.row[0].y;
|
||||
S.row[2].x = S.row[0].z;
|
||||
S.row[2].y = S.row[1].z;
|
||||
|
||||
return S;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
contract(const AcMatrix& mat)
|
||||
{
|
||||
AcReal res = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 3; ++i)
|
||||
res += dot(mat.row[i], mat.row[i]);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1.2 (Equations)
|
||||
* =============================================================================
|
||||
*/
|
||||
static __device__ __forceinline__ AcReal
|
||||
length(const AcReal3& vec)
|
||||
{
|
||||
return sqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal
|
||||
reciprocal_len(const AcReal3& vec)
|
||||
{
|
||||
return rsqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ AcReal3
|
||||
normalized(const AcReal3& vec)
|
||||
{
|
||||
const AcReal inv_len = reciprocal_len(vec);
|
||||
return inv_len * vec;
|
||||
}
|
||||
|
||||
// Sinusoidal forcing
|
||||
// https://arxiv.org/pdf/1704.04676.pdf
|
||||
__constant__ AcReal3 forcing_vec;
|
||||
__constant__ AcReal forcing_phi;
|
||||
static __device__ __forceinline__ AcReal3
|
||||
forcing(const int i, const int j, const int k)
|
||||
{
|
||||
#define DOMAIN_SIZE_X (DCONST_INT(AC_nx) * DCONST_REAL(AC_dsx))
|
||||
#define DOMAIN_SIZE_Y (DCONST_INT(AC_ny) * DCONST_REAL(AC_dsy))
|
||||
#define DOMAIN_SIZE_Z (DCONST_INT(AC_nz) * DCONST_REAL(AC_dsz))
|
||||
const AcReal3 k_vec = (AcReal3){(i - DCONST_INT(AC_nx_min)) * DCONST_REAL(AC_dsx) - AcReal(.5) * DOMAIN_SIZE_X,
|
||||
(j - DCONST_INT(AC_ny_min)) * DCONST_REAL(AC_dsy) - AcReal(.5) * DOMAIN_SIZE_Y,
|
||||
(k - DCONST_INT(AC_nz_min)) * DCONST_REAL(AC_dsz) - AcReal(.5) * DOMAIN_SIZE_Z};
|
||||
AcReal inv_len = reciprocal_len(k_vec);
|
||||
if (isnan(inv_len) || isinf(inv_len))
|
||||
inv_len = 0;
|
||||
if (inv_len > 2) // hack to make it cool
|
||||
inv_len = 2;
|
||||
const AcReal k_dot_x = dot(k_vec, forcing_vec);
|
||||
|
||||
const AcReal waves = cos(k_dot_x)*cos(forcing_phi) - sin(k_dot_x) * sin(forcing_phi);
|
||||
|
||||
return inv_len * inv_len * waves * forcing_vec;
|
||||
}
|
||||
|
||||
|
||||
// Note: LNT0 and LNRHO0 must be set very carefully: if the magnitude is different that other values in the mesh, then we will inherently lose precision
|
||||
#define LNT0 (AcReal(0.0))
|
||||
#define LNRHO0 (AcReal(0.0))
|
||||
|
||||
#define H_CONST (AcReal(0.0))
|
||||
#define C_CONST (AcReal(0.0))
|
||||
|
||||
|
||||
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal
|
||||
rk3_integrate(const AcReal state_previous, const AcReal state_current,
|
||||
const AcReal rate_of_change, const AcReal dt)
|
||||
{
|
||||
// Williamson (1980)
|
||||
const AcReal alpha[] = {0, AcReal(.0), AcReal(-5. / 9.), AcReal(-153. / 128.)};
|
||||
const AcReal beta[] = {0, AcReal(1. / 3.), AcReal(15. / 16.),
|
||||
AcReal(8. / 15.)};
|
||||
|
||||
|
||||
// Note the indexing: +1 to avoid an unnecessary warning about "out-of-bounds"
|
||||
// access (when accessing beta[step_number-1] even when step_number >= 1)
|
||||
switch (step_number) {
|
||||
case 0:
|
||||
return state_current + beta[step_number + 1] * rate_of_change * dt;
|
||||
case 1: // Fallthrough
|
||||
case 2:
|
||||
return state_current +
|
||||
beta[step_number + 1] *
|
||||
(alpha[step_number + 1] * (AcReal(1.) / beta[step_number]) *
|
||||
(state_current - state_previous) +
|
||||
rate_of_change * dt);
|
||||
default:
|
||||
return NAN;
|
||||
}
|
||||
}
|
||||
/*
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal
|
||||
rk3_integrate_scal(const AcReal state_previous, const AcReal state_current,
|
||||
const AcReal rate_of_change, const AcReal dt)
|
||||
{
|
||||
// Williamson (1980)
|
||||
const AcReal alpha[] = {AcReal(.0), AcReal(-5. / 9.), AcReal(-153. / 128.)};
|
||||
const AcReal beta[] = {AcReal(1. / 3.), AcReal(15. / 16.),
|
||||
AcReal(8. / 15.)};
|
||||
|
||||
|
||||
switch (step_number) {
|
||||
case 0:
|
||||
return state_current + beta[step_number] * rate_of_change * dt;
|
||||
case 1: // Fallthrough
|
||||
case 2:
|
||||
return state_current +
|
||||
beta[step_number] *
|
||||
(alpha[step_number] * (AcReal(1.) / beta[step_number - 1]) *
|
||||
(state_current - state_previous) +
|
||||
rate_of_change * dt);
|
||||
default:
|
||||
return NAN;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal3
|
||||
rk3_integrate(const AcReal3 state_previous, const AcReal3 state_current,
|
||||
const AcReal3 rate_of_change, const AcReal dt)
|
||||
{
|
||||
return (AcReal3) { rk3_integrate<step_number>(state_previous.x, state_current.x, rate_of_change.x, dt),
|
||||
rk3_integrate<step_number>(state_previous.y, state_current.y, rate_of_change.y, dt),
|
||||
rk3_integrate<step_number>(state_previous.z, state_current.z, rate_of_change.z, dt)};
|
||||
}
|
||||
|
||||
#define rk3(state_previous, state_current, rate_of_change, dt)\
|
||||
rk3_integrate<step_number>(state_previous, value(state_current), rate_of_change, dt)
|
||||
|
||||
/*
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal
|
||||
rk3_integrate(const int idx, const AcReal out, const int handle,
|
||||
const AcRealData& in_cached, const AcReal rate_of_change, const AcReal dt)
|
||||
{
|
||||
return rk3_integrate_scal<step_number>(out, value(in_cached), rate_of_change, dt);
|
||||
}
|
||||
|
||||
template <int step_number>
|
||||
static __device__ __forceinline__ AcReal3
|
||||
rk3_integrate(const int idx, const AcReal3 out, const int3& handle,
|
||||
const AcReal3Data& in_cached, const AcReal3& rate_of_change, const AcReal dt)
|
||||
{
|
||||
return (AcReal3) {
|
||||
rk3_integrate<step_number>(idx, out, handle.x, in_cached.x, rate_of_change.x, dt),
|
||||
rk3_integrate<step_number>(idx, out, handle.y, in_cached.y, rate_of_change.y, dt),
|
||||
rk3_integrate<step_number>(idx, out, handle.z, in_cached.z, rate_of_change.z, dt)
|
||||
};
|
||||
}
|
||||
|
||||
#define RK3(handle, in_cached, rate_of_change, dt) \
|
||||
rk3_integrate<step_number>(idx, buffer.out, handle, in_cached, rate_of_change, dt)
|
||||
*/
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 1.3 (Kernels)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static __device__ void
|
||||
write(AcReal* __restrict__ out[], const int handle, const int idx, const AcReal value)
|
||||
{
|
||||
out[handle][idx] = value;
|
||||
}
|
||||
|
||||
static __device__ void
|
||||
write(AcReal* __restrict__ out[], const int3 vec, const int idx, const AcReal3 value)
|
||||
{
|
||||
write(out, vec.x, idx, value.x);
|
||||
write(out, vec.y, idx, value.y);
|
||||
write(out, vec.z, idx, value.z);
|
||||
}
|
||||
|
||||
static __device__ AcReal
|
||||
read_out(const int idx, AcReal* __restrict__ field[], const int handle)
|
||||
{
|
||||
return field[handle][idx];
|
||||
}
|
||||
|
||||
static __device__ AcReal3
|
||||
read_out(const int idx, AcReal* __restrict__ field[], const int3 handle)
|
||||
{
|
||||
return (AcReal3) { read_out(idx, field, handle.x),
|
||||
read_out(idx, field, handle.y),
|
||||
read_out(idx, field, handle.z) };
|
||||
}
|
||||
|
||||
#define WRITE_OUT(handle, value) (write(buffer.out, handle, idx, value))
|
||||
#define READ(handle) (read_data(vertexIdx, buffer.in, handle))
|
||||
#define READ_OUT(handle) (read_out(idx, buffer.out, handle))
|
||||
|
||||
// also write for clarity here also, not for the DSL
|
||||
//#define WRITE(HANDLE) (write(idx, ...)) s.t. we don't have to insert boilerplat in the mid of the function
|
||||
|
||||
#define GEN_KERNEL_PARAM_BOILERPLATE \
|
||||
const int3 start, const int3 end, VertexBufferArray buffer
|
||||
|
||||
#define GEN_KERNEL_BUILTIN_VARIABLES_BOILERPLATE() \
|
||||
const int3 vertexIdx = (int3){threadIdx.x + blockIdx.x * blockDim.x + start.x,\
|
||||
threadIdx.y + blockIdx.y * blockDim.y + start.y,\
|
||||
threadIdx.z + blockIdx.z * blockDim.z + start.z};\
|
||||
if (vertexIdx.x >= end.x || vertexIdx.y >= end.y || vertexIdx.z >= end.z)\
|
||||
return;\
|
||||
\
|
||||
\
|
||||
assert(vertexIdx.x < DCONST_INT(AC_nx_max) && vertexIdx.y < DCONST_INT(AC_ny_max) &&\
|
||||
vertexIdx.z < DCONST_INT(AC_nz_max));\
|
||||
\
|
||||
assert(vertexIdx.x >= DCONST_INT(AC_nx_min) && vertexIdx.y >= DCONST_INT(AC_ny_min) &&\
|
||||
vertexIdx.z >= DCONST_INT(AC_nz_min));\
|
||||
\
|
||||
const int idx = IDX(vertexIdx.x, vertexIdx.y, vertexIdx.z);
|
||||
|
||||
#include "stencil_process.cuh"
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Level 2 (Host calls)
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static AcReal
|
||||
randf(void)
|
||||
{
|
||||
return AcReal(rand()) / AcReal(RAND_MAX);
|
||||
}
|
||||
|
||||
AcResult
|
||||
rk3_step_async(const cudaStream_t stream, const dim3& tpb,
|
||||
const int3& start, const int3& end, const int& step_number,
|
||||
const AcReal dt, const AcMeshInfo& /*mesh_info*/,
|
||||
VertexBufferArray* buffer)
|
||||
{
|
||||
/////////////////// Forcing
|
||||
#if LFORCING
|
||||
const AcReal ff_scale = AcReal(.2);
|
||||
static AcReal3 ff = ff_scale * (AcReal3){1, 0, 0};
|
||||
const AcReal radians = randf() * AcReal(2*M_PI) / 360 / 8;
|
||||
const AcMatrix rotz = create_rotz(radians);
|
||||
ff = mul(rotz, ff);
|
||||
cudaMemcpyToSymbolAsync(forcing_vec, &ff, sizeof(ff), 0, cudaMemcpyHostToDevice, stream);
|
||||
|
||||
const AcReal ff_phi = AcReal(M_PI);//AcReal(2 * M_PI) * randf();
|
||||
cudaMemcpyToSymbolAsync(forcing_phi, &ff_phi, sizeof(ff_phi), 0, cudaMemcpyHostToDevice, stream);
|
||||
#endif // LFORCING
|
||||
//////////////////////////
|
||||
|
||||
const int nx = end.x - start.x;
|
||||
const int ny = end.y - start.y;
|
||||
const int nz = end.z - start.z;
|
||||
|
||||
const dim3 bpg(
|
||||
(unsigned int)ceil(nx / AcReal(tpb.x)),
|
||||
(unsigned int)ceil(ny / AcReal(tpb.y)),
|
||||
(unsigned int)ceil(nz / AcReal(tpb.z)));
|
||||
|
||||
|
||||
if (step_number == 0)
|
||||
solve<0><<<bpg, tpb, 0, stream>>>(start, end, *buffer, dt);
|
||||
else if (step_number == 1)
|
||||
solve<1><<<bpg, tpb, 0, stream>>>(start, end, *buffer, dt);
|
||||
else
|
||||
solve<2><<<bpg, tpb, 0, stream>>>(start, end, *buffer, dt);
|
||||
|
||||
ERRCHK_CUDA_KERNEL();
|
||||
return AC_SUCCESS;
|
||||
}
|
91
src/core/math_utils.h
Normal file
91
src/core/math_utils.h
Normal file
@@ -0,0 +1,91 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include <math.h> // isnan, isinf
|
||||
#include <stdlib.h> // rand
|
||||
|
||||
template <class T>
|
||||
static inline const T
|
||||
max(const T& a, const T& b)
|
||||
{
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static inline const T
|
||||
min(const T& a, const T& b)
|
||||
{
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static inline const T
|
||||
sum(const T& a, const T& b)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static inline const T
|
||||
is_valid(const T& val)
|
||||
{
|
||||
if (isnan(val) || isinf(val))
|
||||
return false;
|
||||
else
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static inline const T
|
||||
clamp(const T& val, const T& min, const T& max)
|
||||
{
|
||||
return val < min ? min : val > max ? max : val;
|
||||
}
|
||||
|
||||
static inline AcReal
|
||||
randr()
|
||||
{
|
||||
return AcReal(rand()) / AcReal(RAND_MAX);
|
||||
}
|
||||
|
||||
static inline int3
|
||||
operator+(const int3& a, const int3& b)
|
||||
{
|
||||
return (int3){a.x + b.x, a.y + b.y, a.z + b.z};
|
||||
}
|
||||
|
||||
static inline int3
|
||||
operator-(const int3& a, const int3& b)
|
||||
{
|
||||
return (int3){a.x - b.x, a.y - b.y, a.z - b.z};
|
||||
}
|
||||
|
||||
static inline bool
|
||||
is_power_of_two(const unsigned val)
|
||||
{
|
||||
return val && !(val & (val - 1));
|
||||
}
|
10
src/standalone/CMakeLists.txt
Normal file
10
src/standalone/CMakeLists.txt
Normal file
@@ -0,0 +1,10 @@
|
||||
################################
|
||||
## CMakeLists.txt for utils ##
|
||||
################################
|
||||
|
||||
file (GLOB SOURCES "*.cc" "model/*.cc")
|
||||
|
||||
add_library(astaroth_standalone STATIC ${SOURCES})
|
||||
target_include_directories(astaroth_standalone PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
#target_compile_definitions(astaroth_standalone PRIVATE CONFIG_PATH=\"${CMAKE_SOURCE_DIR}/config/\")
|
||||
target_compile_definitions(astaroth_standalone PRIVATE CONFIG_PATH=\"${ASTAROTH_CONF_PATH}\")
|
732
src/standalone/autotest.cc
Normal file
732
src/standalone/autotest.cc
Normal file
@@ -0,0 +1,732 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "run.h"
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "config_loader.h"
|
||||
#include "core/math_utils.h"
|
||||
#include "model/host_memory.h"
|
||||
#include "model/host_timestep.h"
|
||||
#include "model/model_boundconds.h"
|
||||
#include "model/model_reduce.h"
|
||||
#include "model/model_rk3.h"
|
||||
|
||||
#include "core/errchk.h"
|
||||
|
||||
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
|
||||
|
||||
// Defines for colored output
|
||||
#define RED "\x1B[31m"
|
||||
#define GRN "\x1B[32m"
|
||||
#define YEL "\x1B[33m"
|
||||
#define BLU "\x1B[34m"
|
||||
#define MAG "\x1B[35m"
|
||||
#define CYN "\x1B[36m"
|
||||
#define WHT "\x1B[37m"
|
||||
#define RESET "\x1B[0m"
|
||||
|
||||
#define GEN_TEST_RESULT (1) // Generate a test file always during testing
|
||||
|
||||
typedef struct {
|
||||
int x, y, z;
|
||||
} vec3i;
|
||||
|
||||
typedef struct {
|
||||
AcReal x, y, z;
|
||||
} vec3r;
|
||||
|
||||
|
||||
typedef struct {
|
||||
ModelScalar model;
|
||||
AcReal candidate;
|
||||
ModelScalar error;
|
||||
} ErrorInfo;
|
||||
|
||||
#define QUICK_TEST (0)
|
||||
#define THOROUGH_TEST (1)
|
||||
#define TEST_TYPE QUICK_TEST
|
||||
|
||||
static const InitType test_cases[] = {INIT_TYPE_RANDOM, INIT_TYPE_XWAVE, INIT_TYPE_GAUSSIAN_RADIAL_EXPL, INIT_TYPE_ABC_FLOW};
|
||||
// #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
|
||||
|
||||
#if TEST_TYPE == QUICK_TEST // REGULAR TEST START HERE --------------------------------------------------------------------------------------------------------------
|
||||
static inline ModelScalar
|
||||
get_absolute_error(const ModelScalar& model, const AcReal& candidate)
|
||||
{
|
||||
return fabsl(candidate - model);
|
||||
}
|
||||
|
||||
static inline ModelScalar
|
||||
get_acceptable_absolute_error(const ModelScalar& range)
|
||||
{
|
||||
// This is the upper limit, which assumes that both the min and max values
|
||||
// are used in a calculation (which inherently leads to cancellation).
|
||||
//
|
||||
// AFAIK if this breaks, there is definitely something wrong with the code.
|
||||
// Otherwise the error is so small it's indistiguishable from inherent
|
||||
// inaccuracies in floating-point arithmetic.
|
||||
return range * AC_REAL_EPSILON;
|
||||
}
|
||||
|
||||
static inline ModelScalar
|
||||
get_acceptable_relative_error(void)
|
||||
{
|
||||
return 30; // machine epsilons
|
||||
}
|
||||
|
||||
static inline ModelScalar
|
||||
get_relative_error(const ModelScalar& model, const AcReal& candidate)
|
||||
{
|
||||
ModelScalar error = NAN;
|
||||
|
||||
#if 0
|
||||
const ModelScalar abs_epsilon = get_acceptable_absolute_error(range);
|
||||
if (fabsl(model) < abs_epsilon) { // Model is close to zero
|
||||
/*
|
||||
if (fabsl(candidate - model) <= AC_REAL_EPSILON * fabsl(candidate))
|
||||
error = 0;
|
||||
// Knuth section 4.2.2 pages 217-218 TODO
|
||||
*/
|
||||
if (fabsl(candidate) < abs_epsilon) // If candidate is close to zero
|
||||
error = fabsl(candidate); // return candidate itself
|
||||
else
|
||||
error = INFINITY;
|
||||
}
|
||||
else {
|
||||
error = fabsl(1.0l - candidate / model);
|
||||
}
|
||||
#endif
|
||||
error = fabsl(1.0l - candidate / model);
|
||||
|
||||
// Return the relative error as multiples of the machine epsilon
|
||||
// See Sect. Relative Error and Ulps in
|
||||
// What Every Computer Scientist Should Know About Floating-Point Arithmetic
|
||||
// By David Goldberg (1991)
|
||||
return error / AC_REAL_EPSILON;
|
||||
}
|
||||
|
||||
static bool
|
||||
verify(const ModelScalar& model, const AcReal& cand, const ModelScalar& range)
|
||||
{
|
||||
if (!is_valid(model) || !is_valid(cand))
|
||||
return false;
|
||||
|
||||
const ModelScalar relative_error = get_relative_error(model, cand);
|
||||
if (relative_error < get_acceptable_relative_error())
|
||||
return true;
|
||||
|
||||
const ModelScalar absolute_error = get_absolute_error(model, cand);
|
||||
if (absolute_error < get_acceptable_absolute_error(range))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static ModelScalar
|
||||
get_reduction_range(const ModelMesh& mesh)
|
||||
{
|
||||
ERRCHK(NUM_VTXBUF_HANDLES >= 3);
|
||||
|
||||
const ModelScalar max0 = model_reduce_scal(mesh, RTYPE_MAX,
|
||||
VertexBufferHandle(0));
|
||||
const ModelScalar max1 = model_reduce_scal(mesh, RTYPE_MAX,
|
||||
VertexBufferHandle(1));
|
||||
const ModelScalar max2 = model_reduce_scal(mesh, RTYPE_MAX,
|
||||
VertexBufferHandle(2));
|
||||
const ModelScalar max_scal = max(max0, max(max1, max2));
|
||||
|
||||
const ModelScalar min0 = model_reduce_scal(mesh, RTYPE_MIN,
|
||||
VertexBufferHandle(0));
|
||||
const ModelScalar min1 = model_reduce_scal(mesh, RTYPE_MIN,
|
||||
VertexBufferHandle(1));
|
||||
const ModelScalar min2 = model_reduce_scal(mesh, RTYPE_MIN,
|
||||
VertexBufferHandle(2));
|
||||
const ModelScalar min_scal = min(min0, min(min1, min2));
|
||||
|
||||
return max_scal - min_scal;
|
||||
}
|
||||
|
||||
static void
|
||||
print_debug_info(const ModelScalar& model, const AcReal& candidate,
|
||||
const ModelScalar& range)
|
||||
{
|
||||
printf("MeshPointInfo\n");
|
||||
printf("\tModel: %e\n", double(model));
|
||||
printf("\tCandidate: %e\n", double(candidate));
|
||||
printf("\tRange: %e\n", double(range));
|
||||
|
||||
printf("\tAbsolute error: %Le (max acceptable: %Le)\n",
|
||||
get_absolute_error(model, candidate),
|
||||
get_acceptable_absolute_error(range));
|
||||
printf("\tRelative error: %Le (max acceptable: %Le)\n",
|
||||
get_relative_error(model, candidate),
|
||||
get_acceptable_relative_error());
|
||||
printf("\tIs acceptable: %d\n", verify(model, candidate, range));
|
||||
}
|
||||
|
||||
static void
|
||||
print_result(const ModelScalar& model, const AcReal& candidate,
|
||||
const ModelScalar& range, const char* name = "???")
|
||||
{
|
||||
const ModelScalar rel_err = get_relative_error(model, candidate);
|
||||
const ModelScalar abs_err = get_absolute_error(model, candidate);
|
||||
if (!verify(model, candidate, range)) {
|
||||
printf("\t%-12s... ", name);
|
||||
printf(RED "FAIL! " RESET);
|
||||
}
|
||||
else {
|
||||
printf("\t%-12s... ", name);
|
||||
printf(GRN "OK! " RESET);
|
||||
}
|
||||
|
||||
printf("(relative error: %.3Lg \u03B5, absolute error: %Lg)\n", rel_err, abs_err);
|
||||
/*
|
||||
// DEPRECATED: TODO remove
|
||||
if (rel_err < get_acceptable_relative_error())
|
||||
printf("(relative error: %Lg \u03B5, max accepted %Lg)\n", rel_err,
|
||||
get_acceptable_relative_error());
|
||||
else
|
||||
printf("(absolute error: %Lg, max accepted %Lg)\n", abs_err,
|
||||
get_acceptable_absolute_error(range));
|
||||
*/
|
||||
}
|
||||
|
||||
static int
|
||||
check_reductions(const AcMeshInfo& config)
|
||||
{
|
||||
printf("Testing reductions\n");
|
||||
int num_failures = 0;
|
||||
|
||||
// Init CPU meshes
|
||||
AcMesh* mesh = acmesh_create(config);
|
||||
ModelMesh* modelmesh = modelmesh_create(config);
|
||||
|
||||
// Init GPU meshes
|
||||
acInit(config);
|
||||
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE(test_cases); ++i) {
|
||||
const InitType itype = test_cases[i];
|
||||
printf("Checking %s...\n", init_type_names[InitType(itype)]);
|
||||
|
||||
// Init the mesh and figure out the acceptable range for error
|
||||
acmesh_init_to(InitType(itype), mesh);
|
||||
|
||||
acmesh_to_modelmesh(*mesh, modelmesh);
|
||||
const ModelScalar range = get_reduction_range(*modelmesh);
|
||||
|
||||
acLoad(*mesh);
|
||||
|
||||
for (int rtype = 0; rtype < NUM_REDUCTION_TYPES; ++rtype) {
|
||||
const VertexBufferHandle ftype = VTXBUF_UUX;
|
||||
|
||||
// Scal
|
||||
ModelScalar model = model_reduce_scal(*modelmesh, ReductionType(rtype),
|
||||
VertexBufferHandle(ftype));
|
||||
AcReal candidate = acReduceScal(ReductionType(rtype),
|
||||
VertexBufferHandle(ftype));
|
||||
print_result(model, candidate, range, "UUX scal");
|
||||
|
||||
bool is_acceptable = verify(model, candidate, range);
|
||||
if (!is_acceptable) {
|
||||
++num_failures;
|
||||
|
||||
// Print debug info
|
||||
printf("Scalar reduction type %d FAIL\n", rtype);
|
||||
print_debug_info(model, candidate, range);
|
||||
}
|
||||
|
||||
// Vec
|
||||
model = model_reduce_vec(*modelmesh, ReductionType(rtype), VTXBUF_UUX,
|
||||
VTXBUF_UUY, VTXBUF_UUZ);
|
||||
candidate = acReduceVec(ReductionType(rtype), VTXBUF_UUX,
|
||||
VTXBUF_UUY, VTXBUF_UUZ);
|
||||
print_result(model, candidate, range, "UUXYZ vec");
|
||||
|
||||
is_acceptable = verify(model, candidate, range);
|
||||
if (!is_acceptable) {
|
||||
++num_failures;
|
||||
|
||||
// Print debug info
|
||||
printf("Vector reduction type %d FAIL\n", rtype);
|
||||
print_debug_info(model, candidate, range);
|
||||
}
|
||||
}
|
||||
|
||||
printf("Acceptable relative error: < %Lg \u03B5, absolute error < %Lg\n", get_acceptable_relative_error(), get_acceptable_absolute_error(range));
|
||||
}
|
||||
acQuit();
|
||||
modelmesh_destroy(modelmesh);
|
||||
acmesh_destroy(mesh);
|
||||
|
||||
return num_failures;
|
||||
}
|
||||
|
||||
/** Finds the maximum and minimum in all meshes and computes the range.
|
||||
* Note! Potentially dangerous if all meshes do not interact with each other.
|
||||
* Otherwise the range may be too high.
|
||||
*/
|
||||
static ModelScalar
|
||||
get_data_range(const ModelMesh& model)
|
||||
{
|
||||
ModelScalar vertex_buffer_max_all = -INFINITY;
|
||||
ModelScalar vertex_buffer_min_all = INFINITY;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
|
||||
const ModelScalar vertex_buffer_max = model_reduce_scal(model, RTYPE_MAX, VertexBufferHandle(w));
|
||||
const ModelScalar vertex_buffer_min = model_reduce_scal(model, RTYPE_MIN, VertexBufferHandle(w));
|
||||
|
||||
if (vertex_buffer_max > vertex_buffer_max_all)
|
||||
vertex_buffer_max_all = vertex_buffer_max;
|
||||
if (vertex_buffer_min < vertex_buffer_min_all)
|
||||
vertex_buffer_min_all = vertex_buffer_min;
|
||||
}
|
||||
return fabsl(vertex_buffer_max_all - vertex_buffer_min_all);
|
||||
}
|
||||
|
||||
// #define GEN_TEST_RESULT
|
||||
#if GEN_TEST_RESULT == 1
|
||||
static FILE* test_result = NULL;
|
||||
#endif
|
||||
|
||||
static bool
|
||||
verify_meshes(const ModelMesh& model, const AcMesh& candidate)
|
||||
{
|
||||
bool retval = true;
|
||||
|
||||
#if GEN_TEST_RESULT == 1
|
||||
ErrorInfo err = ErrorInfo();
|
||||
#endif
|
||||
|
||||
const ModelScalar range = get_data_range(model);
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
|
||||
const size_t n = AC_VTXBUF_SIZE(model.info);
|
||||
|
||||
// Maximum errors
|
||||
ErrorInfo max_abs_error = ErrorInfo();
|
||||
ErrorInfo max_rel_error = ErrorInfo();
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
const ModelScalar model_val = model.vertex_buffer[VertexBufferHandle(w)][i];
|
||||
const AcReal cand_val = candidate.vertex_buffer[VertexBufferHandle(w)][i];
|
||||
|
||||
if (!verify(model_val, cand_val, range)) {
|
||||
const int i0 = i % model.info.int_params[AC_mx];
|
||||
const int j0 = ((i % (model.info.int_params[AC_mx] *
|
||||
model.info.int_params[AC_my])) /
|
||||
model.info.int_params[AC_mx]);
|
||||
const int k0 = i / (model.info.int_params[AC_mx] *
|
||||
model.info.int_params[AC_my]);
|
||||
printf("Index (%d, %d, %d)\n", i0, j0, k0);
|
||||
print_debug_info(model_val, cand_val, range);
|
||||
retval = false;
|
||||
}
|
||||
|
||||
const ModelScalar abs_error = get_absolute_error(model_val,
|
||||
cand_val);
|
||||
if (abs_error > max_abs_error.error) {
|
||||
max_abs_error.error = abs_error;
|
||||
max_abs_error.model = model_val;
|
||||
max_abs_error.candidate = cand_val;
|
||||
}
|
||||
|
||||
const ModelScalar rel_error = get_relative_error(model_val, cand_val);
|
||||
if (rel_error > max_rel_error.error) {
|
||||
max_rel_error.error = rel_error;
|
||||
max_rel_error.model = model_val;
|
||||
max_rel_error.candidate = cand_val;
|
||||
}
|
||||
|
||||
#if GEN_TEST_RESULT == 1
|
||||
if (abs_error > err.error) {
|
||||
err.error = abs_error;
|
||||
err.model = model_val;
|
||||
err.candidate = cand_val;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
//print_result(max_rel_error.model, max_rel_error.candidate, range, vtxbuf_names[VertexBufferHandle(w)]);
|
||||
print_result(max_abs_error.model, max_abs_error.candidate, range, vtxbuf_names[VertexBufferHandle(w)]);
|
||||
}
|
||||
|
||||
#if GEN_TEST_RESULT == 1
|
||||
const ModelScalar rel_err = get_relative_error(err.model, err.candidate);
|
||||
const ModelScalar abs_err = get_absolute_error(err.model, err.candidate);
|
||||
fprintf(test_result, "%.3Lg & %.3Lg\n", abs_err, rel_err);
|
||||
#endif
|
||||
|
||||
printf("Acceptable relative error: < %Lg \u03B5, absolute error < %Lg\n", get_acceptable_relative_error(), get_acceptable_absolute_error(range));
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
int
|
||||
check_rk3(const AcMeshInfo& mesh_info)
|
||||
{
|
||||
const int num_iterations = 1; // Note: should work up to at least 15 steps
|
||||
printf("Testing RK3 (running %d steps before checking the result)\n",
|
||||
num_iterations);
|
||||
int num_failures = 0;
|
||||
|
||||
// Init CPU meshes
|
||||
AcMesh* gpu_mesh = acmesh_create(mesh_info);
|
||||
ModelMesh* model_mesh = modelmesh_create(mesh_info);
|
||||
|
||||
// Init GPU meshes
|
||||
acInit(mesh_info);
|
||||
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE(test_cases); ++i) {
|
||||
const InitType itype = test_cases[i];
|
||||
printf("Checking %s...\n", init_type_names[InitType(itype)]);
|
||||
|
||||
// Init the mesh and figure out the acceptable range for error
|
||||
acmesh_init_to(InitType(itype), gpu_mesh);
|
||||
|
||||
acLoad(*gpu_mesh);
|
||||
acmesh_to_modelmesh(*gpu_mesh, model_mesh);
|
||||
|
||||
acBoundcondStep();
|
||||
boundconds(model_mesh->info, model_mesh);
|
||||
|
||||
for (int i = 0; i < num_iterations; ++i) {
|
||||
//const AcReal umax = AcReal(acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ));
|
||||
//const AcReal dt = host_timestep(umax, mesh_info);
|
||||
const AcReal dt = AcReal(1e-2); // Use a small constant timestep to avoid instabilities
|
||||
|
||||
acIntegrate(dt);
|
||||
acBoundcondStep();
|
||||
acSynchronize();
|
||||
|
||||
model_rk3(dt, model_mesh);
|
||||
boundconds(model_mesh->info, model_mesh);
|
||||
}
|
||||
acStore(gpu_mesh);
|
||||
|
||||
bool is_acceptable = verify_meshes(*model_mesh, *gpu_mesh);
|
||||
if (!is_acceptable) {
|
||||
++num_failures;
|
||||
}
|
||||
}
|
||||
|
||||
acQuit();
|
||||
acmesh_destroy(gpu_mesh);
|
||||
modelmesh_destroy(model_mesh);
|
||||
|
||||
return num_failures;
|
||||
}
|
||||
|
||||
int
|
||||
run_autotest(void)
|
||||
{
|
||||
#if GEN_TEST_RESULT == 1
|
||||
char testresult_path[256];
|
||||
sprintf(testresult_path, "%s_fullstep_testresult.out", AC_DOUBLE_PRECISION ? "double" : "float");
|
||||
|
||||
test_result = fopen(testresult_path, "w");
|
||||
ERRCHK(test_result);
|
||||
|
||||
fprintf(test_result, "n, max abs error, corresponding rel error\n");
|
||||
#endif
|
||||
|
||||
/* Parse configs */
|
||||
AcMeshInfo config;
|
||||
load_config(&config);
|
||||
|
||||
if (STENCIL_ORDER > 6)
|
||||
printf("WARNING!!! If the stencil order is larger than the computational domain some vertices may be done twice (f.ex. doing inner and outer domains separately and some of the front/back/left/right/etc slabs collide). The mesh must be large enough s.t. this doesn't happen.");
|
||||
/*
|
||||
const vec3i test_dims[] = { //
|
||||
{15, 11, 13}, //
|
||||
{17, 61, 127}, //
|
||||
{511, 17, 16}, //
|
||||
{64, 64, 8}, //
|
||||
{32, 32, 64}, //
|
||||
{64, 32, 32}, //
|
||||
{128, 64, 32}};
|
||||
*/
|
||||
const vec3i test_dims[] = {{512, 16, 32}, //
|
||||
{64, 64, 32}, //
|
||||
{32, 32, 64}, //
|
||||
{64, 32, 32}, //
|
||||
{128, 64, 32}};
|
||||
|
||||
//const vec3i test_dims[] = {{256,256,256}};
|
||||
//const vec3i test_dims[] = {{256,256,256}};
|
||||
//const vec3i test_dims[] = {{32, 32, 32}};
|
||||
|
||||
int num_failures = 0;
|
||||
/*for (size_t i = 0; i < ARRAY_SIZE(test_dims); ++i) {
|
||||
config.int_params[AC_nx] = test_dims[i].x;
|
||||
config.int_params[AC_ny] = test_dims[i].y;
|
||||
config.int_params[AC_nz] = test_dims[i].z;
|
||||
update_config(&config);
|
||||
|
||||
printf("Testing mesh (%d, %d, %d):\n", //
|
||||
test_dims[i].x, test_dims[i].y, test_dims[i].z);
|
||||
|
||||
num_failures += check_reductions(config);
|
||||
fflush(stdout);
|
||||
}*/ // TODO uncomment
|
||||
|
||||
for (size_t i = 0; i < ARRAY_SIZE(test_dims); ++i) {
|
||||
config.int_params[AC_nx] = test_dims[i].x;
|
||||
config.int_params[AC_ny] = test_dims[i].y;
|
||||
config.int_params[AC_nz] = test_dims[i].z;
|
||||
update_config(&config);
|
||||
|
||||
printf("Testing mesh (%d, %d, %d):\n", //
|
||||
test_dims[i].x, test_dims[i].y, test_dims[i].z);
|
||||
|
||||
num_failures += check_rk3(config);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
printf("\n--------Testing done---------\n");
|
||||
printf("Failures found: %d\n", num_failures);
|
||||
|
||||
#if GEN_TEST_RESULT == 1
|
||||
fflush(test_result);
|
||||
fclose(test_result);
|
||||
#endif
|
||||
|
||||
if (num_failures > 0)
|
||||
return EXIT_FAILURE;
|
||||
else
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#elif TEST_TYPE == THOROUGH_TEST // GEN TEST FILE START HERE --------------------------------------------------------------------------------------------------------------
|
||||
typedef struct {
|
||||
ModelScalar model;
|
||||
AcReal candidate;
|
||||
ModelScalar abs_error;
|
||||
ModelScalar ulp_error;
|
||||
ModelScalar rel_error;
|
||||
ModelScalar maximum_magnitude;
|
||||
ModelScalar minimum_magnitude;
|
||||
} Error;
|
||||
|
||||
Error get_error(ModelScalar model, AcReal candidate)
|
||||
{
|
||||
Error error;
|
||||
error.abs_error = 0;
|
||||
|
||||
error.model = model;
|
||||
error.candidate = candidate;
|
||||
|
||||
if (error.model == error.candidate || fabsl(model - candidate) == 0) { // If exact
|
||||
error.abs_error = 0;
|
||||
error.rel_error = 0;
|
||||
error.ulp_error = 0;
|
||||
} else if (!is_valid(error.model) || !is_valid(error.candidate)) {
|
||||
error.abs_error = INFINITY;
|
||||
error.rel_error = INFINITY;
|
||||
error.ulp_error = INFINITY;
|
||||
} else {
|
||||
const int base = 2;
|
||||
const int p = sizeof(AcReal) == 4 ? 24 : 53; // Bits in the significant
|
||||
|
||||
const ModelScalar e = floorl(logl(fabsl(error.model)) / logl(2));
|
||||
|
||||
const ModelScalar ulp = powl(base, e - (p-1));
|
||||
const ModelScalar machine_epsilon = 0.5 * powl(base, -(p-1));
|
||||
error.abs_error = fabsl(model - candidate);
|
||||
error.ulp_error = error.abs_error / ulp;
|
||||
error.rel_error = fabsl(1.0l - candidate / model) / machine_epsilon;
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
Error get_max_abs_error_mesh(const ModelMesh& model_mesh, const AcMesh& candidate_mesh)
|
||||
{
|
||||
Error error;
|
||||
error.abs_error = -1;
|
||||
|
||||
for (size_t j = 0; j < NUM_VTXBUF_HANDLES; ++j) {
|
||||
for (size_t i = 0; i < AC_VTXBUF_SIZE(model_mesh.info); ++i) {
|
||||
Error curr_error = get_error(model_mesh.vertex_buffer[j][i], candidate_mesh.vertex_buffer[j][i]);
|
||||
if (curr_error.abs_error > error.abs_error)
|
||||
error = curr_error;
|
||||
}
|
||||
}
|
||||
|
||||
error.maximum_magnitude = -1; // Not calculated.
|
||||
error.minimum_magnitude = -1; // Not calculated.
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
static ModelScalar
|
||||
get_maximum_magnitude(const ModelScalar* field, const AcMeshInfo info)
|
||||
{
|
||||
ModelScalar maximum = -INFINITY;
|
||||
|
||||
for (size_t i = 0; i < AC_VTXBUF_SIZE(info); ++i)
|
||||
maximum = max(maximum, fabsl(field[i]));
|
||||
|
||||
return maximum;
|
||||
}
|
||||
|
||||
|
||||
static ModelScalar
|
||||
get_minimum_magnitude(const ModelScalar* field, const AcMeshInfo info)
|
||||
{
|
||||
ModelScalar minimum = INFINITY;
|
||||
|
||||
for (size_t i = 0; i < AC_VTXBUF_SIZE(info); ++i)
|
||||
minimum = min(minimum, fabsl(field[i]));
|
||||
|
||||
return minimum;
|
||||
}
|
||||
|
||||
Error get_max_abs_error_vtxbuf(const VertexBufferHandle vtxbuf_handle, const ModelMesh& model_mesh, const AcMesh& candidate_mesh)
|
||||
{
|
||||
ModelScalar* model_vtxbuf = model_mesh.vertex_buffer[vtxbuf_handle];
|
||||
AcReal* candidate_vtxbuf = candidate_mesh.vertex_buffer[vtxbuf_handle];
|
||||
|
||||
Error error;
|
||||
error.abs_error = -1;
|
||||
|
||||
for (size_t i = 0; i < AC_VTXBUF_SIZE(model_mesh.info); ++i) {
|
||||
|
||||
Error curr_error = get_error(model_vtxbuf[i], candidate_vtxbuf[i]);
|
||||
|
||||
if (curr_error.abs_error > error.abs_error)
|
||||
error = curr_error;
|
||||
}
|
||||
|
||||
|
||||
error.maximum_magnitude = get_maximum_magnitude(model_vtxbuf, model_mesh.info);
|
||||
error.minimum_magnitude = get_minimum_magnitude(model_vtxbuf, model_mesh.info);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
void
|
||||
print_error_to_file(const char* path, const int n, const Error error)
|
||||
{
|
||||
FILE* file = fopen(path, "a");
|
||||
fprintf(file, "%d, %Lg, %Lg, %Lg, %Lg, %Lg\n", n, error.ulp_error, error.abs_error, error.rel_error, error.maximum_magnitude, error.minimum_magnitude);
|
||||
//fprintf(file, "%d, %Lg, %Lg, %Lg, %Lg, %Lg\n", n, error.maximum_magnitude, error.minimum_magnitude, error.abs_error, error.ulp_error, error.rel_error);
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
#define MAX_PATH_LEN (256)
|
||||
|
||||
int run_autotest(void)
|
||||
{
|
||||
|
||||
#define N_MIN (32)
|
||||
#define N_MAX (512)
|
||||
for (int n = N_MIN; n <= N_MAX; n += N_MIN) {
|
||||
AcMeshInfo config;
|
||||
load_config(&config);
|
||||
config.int_params[AC_nx] = config.int_params[AC_ny] = config.int_params[AC_nz] = n;
|
||||
update_config(&config);
|
||||
|
||||
// Init host
|
||||
AcMesh* candidate_mesh = acmesh_create(config);
|
||||
ModelMesh* model_mesh = modelmesh_create(config);
|
||||
|
||||
// Init device
|
||||
acInit(config);
|
||||
|
||||
// Check all initial conditions
|
||||
for (int i = 0; i < ARRAY_SIZE(test_cases); ++i) {
|
||||
const InitType init_type = test_cases[i];
|
||||
acmesh_init_to((InitType)init_type, candidate_mesh);
|
||||
acmesh_to_modelmesh(*candidate_mesh, model_mesh); // Load to Host
|
||||
acLoad(*candidate_mesh); // Load to Device
|
||||
|
||||
boundconds(model_mesh->info, model_mesh);
|
||||
acBoundcondStep();
|
||||
|
||||
{ // Check boundconds
|
||||
acStore(candidate_mesh);
|
||||
Error boundcond_error = get_max_abs_error_mesh(*model_mesh, *candidate_mesh);
|
||||
char boundcond_path[MAX_PATH_LEN];
|
||||
sprintf(boundcond_path, "%s_boundcond_%s.testresult", AC_DOUBLE_PRECISION ? "double" : "float", init_type_names[(InitType)init_type]);
|
||||
print_error_to_file(boundcond_path, n, boundcond_error);
|
||||
}
|
||||
|
||||
{ // Check scalar max reduction
|
||||
ModelScalar model = model_reduce_scal(*model_mesh, (ReductionType)RTYPE_MAX, VTXBUF_UUX);
|
||||
AcReal candidate = acReduceScal((ReductionType)RTYPE_MAX, VTXBUF_UUX);
|
||||
Error scalar_reduce_error = get_error(model, candidate);
|
||||
char scalar_reduce_path[MAX_PATH_LEN];
|
||||
sprintf(scalar_reduce_path, "%s_scalar_reduce_%s.testresult", AC_DOUBLE_PRECISION ? "double" : "float", init_type_names[(InitType)init_type]);
|
||||
print_error_to_file(scalar_reduce_path, n, scalar_reduce_error);
|
||||
}
|
||||
|
||||
{ // Check vector max reduction
|
||||
ModelScalar model = model_reduce_vec(*model_mesh, (ReductionType)RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
AcReal candidate = acReduceVec((ReductionType)RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
Error vector_reduce_error = get_error(model, candidate);
|
||||
char vector_reduce_path[MAX_PATH_LEN];
|
||||
sprintf(vector_reduce_path, "%s_vector_reduce_%s.testresult", AC_DOUBLE_PRECISION ? "double" : "float", init_type_names[(InitType)init_type]);
|
||||
print_error_to_file(vector_reduce_path, n, vector_reduce_error);
|
||||
}
|
||||
|
||||
// Time advance
|
||||
{
|
||||
const AcReal umax = (AcReal)model_reduce_vec(*model_mesh, (ReductionType)RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
const AcReal dt = host_timestep(umax, config);
|
||||
|
||||
// Host integration step
|
||||
model_rk3(dt, model_mesh);
|
||||
boundconds(config, model_mesh);
|
||||
|
||||
// Device integration step
|
||||
acIntegrate(dt);
|
||||
acBoundcondStep();
|
||||
acSynchronize();
|
||||
acStore(candidate_mesh);
|
||||
|
||||
// Check fields
|
||||
for (int vtxbuf_handle = 0; vtxbuf_handle < NUM_VTXBUF_HANDLES; ++vtxbuf_handle) {
|
||||
Error field_error = get_max_abs_error_vtxbuf((VertexBufferHandle)vtxbuf_handle, *model_mesh, *candidate_mesh);
|
||||
|
||||
printf("model %Lg, cand %Lg, abs %Lg, rel %Lg\n", (ModelScalar)field_error.model, (ModelScalar)field_error.candidate, (ModelScalar)field_error.abs_error, (ModelScalar)field_error.rel_error);
|
||||
|
||||
char field_path[MAX_PATH_LEN];
|
||||
sprintf(field_path, "%s_integrationstep_%s_%s.testresult", AC_DOUBLE_PRECISION ? "double" : "float", init_type_names[(InitType)init_type], vtxbuf_names[(VertexBufferHandle)vtxbuf_handle]);
|
||||
print_error_to_file(field_path, n, field_error);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Deallocate host
|
||||
acmesh_destroy(candidate_mesh);
|
||||
modelmesh_destroy(model_mesh);
|
||||
|
||||
// Deallocate device
|
||||
acQuit();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
300
src/standalone/benchmark.cc
Normal file
300
src/standalone/benchmark.cc
Normal file
@@ -0,0 +1,300 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "run.h"
|
||||
|
||||
#include <stdlib.h> // EXIT_SUCCESS
|
||||
|
||||
#include "config_loader.h"
|
||||
#include "model/host_memory.h"
|
||||
#include "model/host_timestep.h"
|
||||
#include "model/model_reduce.h"
|
||||
#include "model/model_rk3.h"
|
||||
#include "timer_hires.h"
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <math.h>
|
||||
#include "src/core/errchk.h"
|
||||
|
||||
static bool
|
||||
smaller_than(const double& a, const double& b)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
|
||||
static int
|
||||
write_runningtimes(const char* path, const int n, const double min, const double max, const double median, const double perc)
|
||||
{
|
||||
FILE* fp;
|
||||
fp = fopen(path, "a");
|
||||
|
||||
if (fp != NULL) {
|
||||
fprintf(fp, "%d, %f, %f, %f, %f\n", n, min, max, median, perc);
|
||||
fclose(fp);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
static int
|
||||
write_percentiles(const char* path, const int num_iters, const std::vector<double>& results)
|
||||
{
|
||||
FILE* fp;
|
||||
fp = fopen(path, "w");
|
||||
|
||||
if (fp != NULL) {
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
fprintf(fp, "%f\n", results[(long unsigned)((i / 100.) * num_iters)]);
|
||||
}
|
||||
fclose(fp);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
int
|
||||
run_benchmark(void)
|
||||
{
|
||||
char runningtime_path[256];
|
||||
sprintf(runningtime_path, "%s_%s_runningtimes.out", AC_DOUBLE_PRECISION ? "double" : "float", GEN_BENCHMARK_RK3 ? "rk3substep" : "fullstep");
|
||||
|
||||
FILE* fp;
|
||||
fp = fopen(runningtime_path, "w");
|
||||
|
||||
if (fp != NULL) {
|
||||
fprintf(fp, "n, min, max, median, perc\n");
|
||||
fclose(fp);
|
||||
} else {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#define N_STEP_SIZE (128)
|
||||
#define MAX_MESH_DIM (128)
|
||||
#define NUM_ITERS (100)
|
||||
for (int n = N_STEP_SIZE; n <= MAX_MESH_DIM; n += N_STEP_SIZE) {
|
||||
/* Parse configs */
|
||||
AcMeshInfo mesh_info;
|
||||
load_config(&mesh_info);
|
||||
mesh_info.int_params[AC_nx] = n;
|
||||
mesh_info.int_params[AC_ny] = mesh_info.int_params[AC_nx];
|
||||
mesh_info.int_params[AC_nz] = mesh_info.int_params[AC_nx];
|
||||
update_config(&mesh_info);
|
||||
|
||||
AcMesh* mesh = acmesh_create(mesh_info);
|
||||
acmesh_init_to(INIT_TYPE_ABC_FLOW, mesh);
|
||||
|
||||
acInit(mesh_info);
|
||||
acLoad(*mesh);
|
||||
|
||||
std::vector<double> results;
|
||||
results.reserve(NUM_ITERS);
|
||||
|
||||
|
||||
// Warmup
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
acIntegrate(0);
|
||||
acSynchronize();
|
||||
}
|
||||
|
||||
Timer t;
|
||||
for (int i = 0; i < NUM_ITERS; ++i) {
|
||||
|
||||
timer_reset(&t);
|
||||
#if GEN_BENCHMARK_RK3 == 1
|
||||
acIntegrateStep(2, FLT_EPSILON);
|
||||
#else // GEN_BENCHMARK_FULL
|
||||
//const AcReal umax = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
const AcReal dt = AcReal(1e-2); // TODO adaptive timestep //host_timestep(umax, mesh_info);
|
||||
acIntegrate(dt);
|
||||
#endif
|
||||
acSynchronize();
|
||||
|
||||
const double ms_elapsed = timer_diff_nsec(t) / 1e6;
|
||||
results.push_back(ms_elapsed);
|
||||
}
|
||||
|
||||
#define NTH_PERCENTILE (0.95)
|
||||
std::sort(results.begin(), results.end(), smaller_than);
|
||||
write_runningtimes(runningtime_path, n, results[0], results[results.size()-1], results[int(0.5 * NUM_ITERS)], results[int(NTH_PERCENTILE * NUM_ITERS)]);
|
||||
|
||||
char percentile_path[256];
|
||||
sprintf(percentile_path, "%d_%s_%s_percentiles.out", n, AC_DOUBLE_PRECISION ? "double" : "float", GEN_BENCHMARK_RK3 ? "rk3substep" : "fullstep");
|
||||
write_percentiles(percentile_path, NUM_ITERS, results);
|
||||
|
||||
printf("%s running time %g ms, (%dth percentile, nx = %d) \n", GEN_BENCHMARK_RK3 ? "RK3 step" : "Fullstep", double(results[int(NTH_PERCENTILE * NUM_ITERS)]), int(NTH_PERCENTILE * 100), mesh_info.int_params[AC_nx]);
|
||||
|
||||
acStore(mesh);
|
||||
acQuit();
|
||||
acmesh_destroy(mesh);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
#if AUTO_OPTIMIZE
|
||||
const char* benchmark_path = "benchmark.out";
|
||||
|
||||
#include "core/kernels/rk3_threadblock.conf"
|
||||
static int
|
||||
write_result_to_file(const float& ms_per_step)
|
||||
{
|
||||
FILE* fp;
|
||||
fp = fopen(benchmark_path, "a");
|
||||
|
||||
if (fp != NULL) {
|
||||
fprintf(fp,
|
||||
"(%d, %d, %d), %d elems per thread, launch bound %d, %f ms\n",
|
||||
RK_THREADS_X, RK_THREADS_Y, RK_THREADS_Z, RK_ELEMS_PER_THREAD,
|
||||
RK_LAUNCH_BOUND_MIN_BLOCKS, double(ms_per_step));
|
||||
fclose(fp);
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if GENERATE_BENCHMARK_DATA != 1
|
||||
int
|
||||
run_benchmark(void)
|
||||
{
|
||||
// Parse configs
|
||||
AcMeshInfo mesh_info;
|
||||
load_config(&mesh_info);
|
||||
mesh_info.int_params[AC_nx] = 128;
|
||||
mesh_info.int_params[AC_ny] = mesh_info.int_params[AC_nx];
|
||||
mesh_info.int_params[AC_nz] = mesh_info.int_params[AC_nx];
|
||||
update_config(&mesh_info);
|
||||
|
||||
AcMesh* mesh = acmesh_create(mesh_info);
|
||||
acmesh_init_to(INIT_TYPE_ABC_FLOW, mesh);
|
||||
|
||||
acInit(mesh_info);
|
||||
acLoad(*mesh);
|
||||
|
||||
Timer t;
|
||||
timer_reset(&t);
|
||||
|
||||
int steps = 0;
|
||||
const int num_steps = 100;
|
||||
while (steps < num_steps) {
|
||||
// Advance the simulation
|
||||
const AcReal umax = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY,
|
||||
VTXBUF_UUZ);
|
||||
const AcReal dt = host_timestep(umax, mesh_info);
|
||||
acIntegrate(dt);
|
||||
++steps;
|
||||
}
|
||||
acSynchronize();
|
||||
const float wallclock = timer_diff_nsec(t) / 1e9f;
|
||||
printf("%d steps. Wallclock time %f s per step\n", steps,
|
||||
double(wallclock) / num_steps);
|
||||
#if AUTO_OPTIMIZE
|
||||
write_result_to_file(wallclock * 1e3f / steps);
|
||||
#endif
|
||||
|
||||
acStore(mesh);
|
||||
acQuit();
|
||||
acmesh_destroy(mesh);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else //////////////////////////////////////////////////////////////////////////GENERATE_BENCHMARK_DATA
|
||||
|
||||
|
||||
|
||||
|
||||
int
|
||||
run_benchmark(void)
|
||||
{
|
||||
const char path[] = "result.out";
|
||||
FILE* fp;
|
||||
fp = fopen(path, "w");
|
||||
|
||||
if (fp != NULL) {
|
||||
fprintf(fp, "n, min, max, median, perc\n");
|
||||
fclose(fp);
|
||||
} else {
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#define N_STEP_SIZE (256)
|
||||
#define MAX_MESH_DIM (256)
|
||||
#define NUM_ITERS (1000)
|
||||
for (int n = N_STEP_SIZE; n <= MAX_MESH_DIM; n += N_STEP_SIZE) {
|
||||
// Parse configs
|
||||
AcMeshInfo mesh_info;
|
||||
load_config(&mesh_info);
|
||||
mesh_info.int_params[AC_nx] = n;
|
||||
mesh_info.int_params[AC_ny] = mesh_info.int_params[AC_nx];
|
||||
mesh_info.int_params[AC_nz] = mesh_info.int_params[AC_nx];
|
||||
update_config(&mesh_info);
|
||||
|
||||
AcMesh* mesh = acmesh_create(mesh_info);
|
||||
acmesh_init_to(INIT_TYPE_ABC_FLOW, mesh);
|
||||
|
||||
acInit(mesh_info);
|
||||
acLoad(*mesh);
|
||||
|
||||
std::vector<double> results;
|
||||
results.reserve(NUM_ITERS);
|
||||
|
||||
|
||||
// Warmup
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
acIntegrate(0);
|
||||
acSynchronize();
|
||||
}
|
||||
|
||||
Timer t;
|
||||
|
||||
const AcReal dt = AcReal(1e-5);
|
||||
for (int i = 0; i < NUM_ITERS; ++i) {
|
||||
|
||||
timer_reset(&t);
|
||||
//acIntegrate(dt);
|
||||
acIntegrateStep(2, dt);
|
||||
acSynchronize();
|
||||
|
||||
const double ms_elapsed = timer_diff_nsec(t) / 1e6;
|
||||
results.push_back(ms_elapsed);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#define NTH_PERCENTILE (0.95)
|
||||
std::sort(results.begin(), results.end(), smaller_than);
|
||||
write_result(n, results[0], results[results.size()-1], results[int(0.5 * NUM_ITERS)], results[int(NTH_PERCENTILE * NUM_ITERS)]);
|
||||
write_percentiles(n, NUM_ITERS, results);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
*/
|
194
src/standalone/config_loader.cc
Normal file
194
src/standalone/config_loader.cc
Normal file
@@ -0,0 +1,194 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "config_loader.h"
|
||||
|
||||
#include <limits.h> // UINT_MAX
|
||||
#include <stdint.h> // uint8_t, uint32_t
|
||||
#include <stdio.h> // print
|
||||
#include <string.h> // memset
|
||||
|
||||
#include "core/errchk.h"
|
||||
#include "core/math_utils.h"
|
||||
|
||||
static inline void
|
||||
print(const AcMeshInfo& config)
|
||||
{
|
||||
for (int i = 0; i < NUM_INT_PARAM_TYPES; ++i)
|
||||
printf("[%s]: %d\n", intparam_names[i], config.int_params[i]);
|
||||
for (int i = 0; i < NUM_REAL_PARAM_TYPES; ++i)
|
||||
printf("[%s]: %g\n", realparam_names[i], double(config.real_params[i]));
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Find the index of the keyword in names
|
||||
\return Index in range 0...n if the keyword is in names. -1 if the keyword was
|
||||
not found.
|
||||
*/
|
||||
static int
|
||||
find_str(const char keyword[], const char* names[], const int& n)
|
||||
{
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (!strcmp(keyword, names[i]))
|
||||
return i;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void
|
||||
parse_config(const char* path, AcMeshInfo* config)
|
||||
{
|
||||
FILE* fp;
|
||||
fp = fopen(path, "r");
|
||||
// For knowing which .conf file will be used
|
||||
printf("Config file path: \n %s \n ", path);
|
||||
ERRCHK(fp != NULL);
|
||||
|
||||
const size_t BUF_SIZE = 128;
|
||||
char keyword[BUF_SIZE];
|
||||
char value[BUF_SIZE];
|
||||
int items_matched;
|
||||
while ((items_matched = fscanf(fp, "%s = %s", keyword, value)) != EOF) {
|
||||
|
||||
if (items_matched < 2)
|
||||
continue;
|
||||
|
||||
int idx = -1;
|
||||
if ((idx = find_str(keyword, intparam_names, NUM_INT_PARAM_TYPES)) >= 0)
|
||||
config->int_params[idx] = atoi(value);
|
||||
else if ((idx = find_str(keyword, realparam_names,
|
||||
NUM_REAL_PARAM_TYPES)) >= 0)
|
||||
config->real_params[idx] = AcReal(atof(value));
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void
|
||||
update_config(AcMeshInfo* config)
|
||||
{
|
||||
config->int_params[AC_mx] = config->int_params[AC_nx] + STENCIL_ORDER;
|
||||
///////////// PAD TEST
|
||||
//config->int_params[AC_mx] = config->int_params[AC_nx] + STENCIL_ORDER + PAD_SIZE;
|
||||
///////////// PAD TEST
|
||||
config->int_params[AC_my] = config->int_params[AC_ny] + STENCIL_ORDER;
|
||||
config->int_params[AC_mz] = config->int_params[AC_nz] + STENCIL_ORDER;
|
||||
|
||||
// Bounds for the computational domain, i.e. nx_min <= i < nx_max
|
||||
config->int_params[AC_nx_min] = STENCIL_ORDER / 2;
|
||||
config->int_params[AC_nx_max] = config->int_params[AC_nx_min] +
|
||||
config->int_params[AC_nx];
|
||||
config->int_params[AC_ny_min] = STENCIL_ORDER / 2;
|
||||
config->int_params[AC_ny_max] = config->int_params[AC_ny] +
|
||||
STENCIL_ORDER / 2;
|
||||
config->int_params[AC_nz_min] = STENCIL_ORDER / 2;
|
||||
config->int_params[AC_nz_max] = config->int_params[AC_nz] +
|
||||
STENCIL_ORDER / 2;
|
||||
|
||||
// Spacing
|
||||
config->real_params[AC_inv_dsx] = AcReal(1.) / config->real_params[AC_dsx];
|
||||
config->real_params[AC_inv_dsy] = AcReal(1.) / config->real_params[AC_dsy];
|
||||
config->real_params[AC_inv_dsz] = AcReal(1.) / config->real_params[AC_dsz];
|
||||
config->real_params[AC_dsmin] = min(config->real_params[AC_dsx], min(config->real_params[AC_dsy], config->real_params[AC_dsz]));
|
||||
|
||||
// Real grid coordanates (DEFINE FOR GRID WITH THE GHOST ZONES)
|
||||
config->real_params[AC_xlen] = config->real_params[AC_dsx]*config->int_params[AC_mx];
|
||||
config->real_params[AC_ylen] = config->real_params[AC_dsy]*config->int_params[AC_my];
|
||||
config->real_params[AC_zlen] = config->real_params[AC_dsz]*config->int_params[AC_mz];
|
||||
|
||||
config->real_params[AC_xorig] = AcReal(.5) * config->real_params[AC_xlen];
|
||||
config->real_params[AC_yorig] = AcReal(.5) * config->real_params[AC_ylen];
|
||||
config->real_params[AC_zorig] = AcReal(.5) * config->real_params[AC_zlen];
|
||||
|
||||
/* Additional helper params */
|
||||
// Int helpers
|
||||
config->int_params[AC_mxy] = config->int_params[AC_mx] *
|
||||
config->int_params[AC_my];
|
||||
config->int_params[AC_nxy] = config->int_params[AC_nx] *
|
||||
config->int_params[AC_ny];
|
||||
config->int_params[AC_nxyz] = config->int_params[AC_nxy] *
|
||||
config->int_params[AC_nz];
|
||||
|
||||
// Real helpers
|
||||
config->real_params[AC_cs2_sound] = config->real_params[AC_cs_sound] *
|
||||
config->real_params[AC_cs_sound];
|
||||
|
||||
config->real_params[AC_cv_sound] = config->real_params[AC_cp_sound] / config->real_params[AC_gamma];
|
||||
|
||||
AcReal G_CONST_CGS = AcReal(6.674e-8); // g/cm3/s GGS definition //TODO define in a separate module
|
||||
AcReal M_sun = AcReal(1.989e33); // g solar mass
|
||||
|
||||
config->real_params[AC_M_star] = config->real_params[AC_M_star]*M_sun /
|
||||
( (config->real_params[AC_unit_length]*
|
||||
config->real_params[AC_unit_length]*
|
||||
config->real_params[AC_unit_length]) *
|
||||
config->real_params[AC_unit_density] ) ;
|
||||
|
||||
config->real_params[AC_G_CONST] = G_CONST_CGS /
|
||||
( (config->real_params[AC_unit_velocity]*config->real_params[AC_unit_velocity]) /
|
||||
(config->real_params[AC_unit_density] *config->real_params[AC_unit_length]) ) ;
|
||||
|
||||
config->real_params[AC_GM_star] = config->real_params[AC_M_star]*config->real_params[AC_G_CONST];
|
||||
config->real_params[AC_sq2GM_star] = AcReal(sqrt(AcReal(2)*config->real_params[AC_GM_star]));
|
||||
|
||||
|
||||
const bool print_config = true;
|
||||
if (print_config) {
|
||||
printf("###############################################################"
|
||||
"\n");
|
||||
printf("Config dimensions recalculated:\n");
|
||||
print(*config);
|
||||
printf("###############################################################"
|
||||
"\n");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief Loads data from astaroth.conf into a config struct.
|
||||
\return 0 on success, -1 if there are potentially uninitialized values.
|
||||
*/
|
||||
int
|
||||
load_config(AcMeshInfo* config)
|
||||
{
|
||||
int retval = 0;
|
||||
// memset reads the second parameter as a byte even though it says int in
|
||||
// the function declaration
|
||||
memset(config, (uint8_t)0xFF, sizeof(*config));
|
||||
|
||||
parse_config(CONFIG_PATH "astaroth.conf", config);
|
||||
update_config(config);
|
||||
|
||||
// sizeof(config) must be a multiple of 4 bytes for this to work
|
||||
ERRCHK(sizeof(*config) % sizeof(uint32_t) == 0);
|
||||
for (size_t i = 0; i < sizeof(*config) / sizeof(uint32_t); ++i) {
|
||||
if (((uint32_t*)config)[i] == (uint32_t)0xFFFFFFFF) {
|
||||
WARNING("Some config values may be uninitialized. "
|
||||
"See that all are defined in astaroth.conf\n");
|
||||
retval = -1;
|
||||
}
|
||||
}
|
||||
return retval;
|
||||
}
|
34
src/standalone/config_loader.h
Normal file
34
src/standalone/config_loader.h
Normal file
@@ -0,0 +1,34 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Functions for loading and updating AcMeshInfo.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
|
||||
/** Loads data from the config file */
|
||||
int load_config(AcMeshInfo* config);
|
||||
|
||||
/** Recalculates the portion of int parameters which get their values from nx,
|
||||
* ny and nz. Must be called after modifying the config struct or otherwise
|
||||
* contents of the struct will be incorrect */
|
||||
void update_config(AcMeshInfo* config);
|
94
src/standalone/main.cc
Normal file
94
src/standalone/main.cc
Normal file
@@ -0,0 +1,94 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "core/errchk.h"
|
||||
#include "run.h"
|
||||
|
||||
// Write all errors from stderr to an <errorlog_name> in the current working
|
||||
// directory
|
||||
static const bool write_log_to_a_file = false;
|
||||
static const char* errorlog_name = "error.log";
|
||||
|
||||
static void
|
||||
errorlog_init(void)
|
||||
{
|
||||
FILE* fp = freopen(errorlog_name, "w", stderr); // Log errors to a file
|
||||
if (!fp)
|
||||
perror("Error redirecting stderr to a file");
|
||||
}
|
||||
|
||||
static void
|
||||
errorlog_quit(void)
|
||||
{
|
||||
fclose(stderr);
|
||||
|
||||
// Print contents of the latest errorlog to screen
|
||||
FILE* fp = fopen(errorlog_name, "r");
|
||||
if (fp) {
|
||||
for (int c = getc(fp); c != EOF; c = getc(fp))
|
||||
putchar(c);
|
||||
fclose(fp);
|
||||
}
|
||||
else {
|
||||
perror("Error opening error log");
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
main(int argc, char* argv[])
|
||||
{
|
||||
if (write_log_to_a_file) {
|
||||
errorlog_init();
|
||||
atexit(errorlog_quit);
|
||||
}
|
||||
|
||||
printf("Args: \n");
|
||||
for (int i = 0; i < argc; ++i)
|
||||
printf("%d: %s\n", i, argv[i]);
|
||||
|
||||
if (argc == 1) {
|
||||
return run_renderer();
|
||||
}
|
||||
else if (argc == 2) {
|
||||
if (strcmp(argv[1], "-t") == 0)
|
||||
return run_autotest();
|
||||
else if (strcmp(argv[1], "-b") == 0)
|
||||
return run_benchmark();
|
||||
else if (strcmp(argv[1], "-s") == 0)
|
||||
return run_simulation();
|
||||
else
|
||||
WARNING("Unrecognized option");
|
||||
}
|
||||
else {
|
||||
WARNING("Too many options given");
|
||||
}
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
737
src/standalone/model/host_memory.cc
Normal file
737
src/standalone/model/host_memory.cc
Normal file
@@ -0,0 +1,737 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "host_memory.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "core/errchk.h"
|
||||
|
||||
const char* init_type_names[] = {AC_FOR_INIT_TYPES(AC_GEN_STR)};
|
||||
|
||||
#define XORIG (AcReal(.5) * mesh->info.int_params[AC_nx] * mesh->info.real_params[AC_dsx])
|
||||
#define YORIG (AcReal(.5) * mesh->info.int_params[AC_ny] * mesh->info.real_params[AC_dsy])
|
||||
#define ZORIG (AcReal(.5) * mesh->info.int_params[AC_nz] * mesh->info.real_params[AC_dsz])
|
||||
|
||||
/*
|
||||
#include <stdint.h>
|
||||
static uint64_t ac_rand_next = 1;
|
||||
|
||||
static int32_t
|
||||
ac_rand(void)
|
||||
{
|
||||
ac_rand_next = ac_rand_next * 1103515245 + 12345;
|
||||
return (uint32_t)(ac_rand_next/65536) % 32768;
|
||||
}
|
||||
|
||||
static void
|
||||
ac_srand(const uint32_t seed)
|
||||
{
|
||||
ac_rand_next = seed;
|
||||
}
|
||||
*/
|
||||
|
||||
AcMesh*
|
||||
acmesh_create(const AcMeshInfo& mesh_info)
|
||||
{
|
||||
AcMesh* mesh = (AcMesh*)malloc(sizeof(*mesh));
|
||||
mesh->info = mesh_info;
|
||||
|
||||
const size_t bytes = AC_VTXBUF_SIZE_BYTES(mesh->info);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
mesh->vertex_buffer[VertexBufferHandle(i)] = (AcReal*)malloc(bytes);
|
||||
ERRCHK(mesh->vertex_buffer[VertexBufferHandle(i)] != NULL);
|
||||
}
|
||||
|
||||
return mesh;
|
||||
}
|
||||
|
||||
static void
|
||||
vertex_buffer_set(const VertexBufferHandle& key, const AcReal& val,
|
||||
AcMesh* mesh)
|
||||
{
|
||||
const int n = AC_VTXBUF_SIZE(mesh->info);
|
||||
for (int i = 0; i < n; ++i)
|
||||
mesh->vertex_buffer[key][i] = val;
|
||||
}
|
||||
|
||||
|
||||
/** Inits all fields to 1. Setting the mesh to zero is problematic because some fields are supposed
|
||||
to be > 0 and the results would vary widely, which leads to loss of precision in the
|
||||
computations */
|
||||
void
|
||||
acmesh_clear(AcMesh* mesh)
|
||||
{
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
vertex_buffer_set(VertexBufferHandle(w), 1, mesh); // Init all fields to 1 by default.
|
||||
}
|
||||
|
||||
static AcReal
|
||||
randr(void)
|
||||
{
|
||||
return AcReal(rand()) / AcReal(RAND_MAX);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
lnrho_step(AcMesh* mesh)
|
||||
{
|
||||
const int mx = mesh->info.int_params[AC_mx];
|
||||
const int my = mesh->info.int_params[AC_my];
|
||||
const int mz = mesh->info.int_params[AC_mz];
|
||||
|
||||
// const int nx_min = mesh->info.int_params[AC_nx_min];
|
||||
// const int nx_max = mesh->info.int_params[AC_nx_max];
|
||||
// const int ny_min = mesh->info.int_params[AC_ny_min];
|
||||
// const int ny_max = mesh->info.int_params[AC_ny_max];
|
||||
// const int nz_min = mesh->info.int_params[AC_nz_min];
|
||||
// const int nz_max = mesh->info.int_params[AC_nz_max];
|
||||
|
||||
// const AcReal DX = mesh->info.real_params[AC_dsx];
|
||||
// const AcReal DY = mesh->info.real_params[AC_dsy];
|
||||
// const AcReal DZ = mesh->info.real_params[AC_dsz];
|
||||
// const AcReal xmax = DX * (nx_max - nx_min) ;
|
||||
// const AcReal zmax = DZ * (nz_max - nz_min) ;
|
||||
|
||||
// const AcReal lnrho1 = (AcReal) -1.0; // TODO mesh->info.real_params[AC_lnrho1];
|
||||
const AcReal lnrho2 = (AcReal) 0.0; // TODO mesh->info.real_params[AC_lnrho2];
|
||||
// const AcReal rho1 = (AcReal) exp(lnrho1);
|
||||
// const AcReal rho2 = (AcReal) exp(lnrho2);
|
||||
|
||||
// const AcReal k_pert = (AcReal) 1.0; //mesh->info.real_params[AC_k_pert]; //Wamenumber of the perturbation
|
||||
// const AcReal k_pert = 4.0; //mesh->info.real_params[AC_k_pert]; //Wamenumber of the perturbation
|
||||
//const AcReal ampl_pert = xmax/10.0; // xmax/mesh->info.real_params[AC_pert]; //Amplitude of the perturbation
|
||||
// const AcReal ampl_pert = (AcReal) 0.0;//xmax/20.0; // xmax/mesh->info.real_params[AC_pert]; //Amplitude of the perturbation
|
||||
// const AcReal two_pi = (AcReal) 6.28318531;
|
||||
|
||||
// const AcReal xorig = mesh->info.real_params[AC_xorig];
|
||||
// const AcReal zorig = mesh->info.real_params[AC_zorig];
|
||||
// const AcReal trans = mesh->info.real_params[AC_trans];
|
||||
|
||||
|
||||
// AcReal xx, zz, tanhprof, cosz_wave;
|
||||
|
||||
for (int k = 0; k < mz; k++) {
|
||||
for (int j = 0; j < my; j++) {
|
||||
for (int i = 0; i < mx; i++) {
|
||||
int idx = i + j * mx + k * mx * my;
|
||||
// zz = DZ * AcReal(k) - zorig; // Not used
|
||||
// cosz_wave = ampl_pert*AcReal(cos(k_pert*((zz/zmax)*two_pi))); // Not used
|
||||
// xx = DX * AcReal(i) - xorig + cosz_wave; //ADD WAVE TODO // Not used
|
||||
// tanhprof = AcReal(0.5)*((rho2+rho1) + (rho2-rho1)*AcReal(tanh(xx/trans))); // Not used
|
||||
// Commented out the step function initial codition.
|
||||
//mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(tanhprof);
|
||||
mesh->vertex_buffer[VTXBUF_LNRHO][idx] = lnrho2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
// This is the initial condition type for the infalling vedge in the pseudodisk
|
||||
// model.
|
||||
void
|
||||
inflow_vedge(AcMesh* mesh)
|
||||
{
|
||||
const int mx = mesh->info.int_params[AC_mx];
|
||||
const int my = mesh->info.int_params[AC_my];
|
||||
const int mz = mesh->info.int_params[AC_mz];
|
||||
|
||||
// const int nx_min = mesh->info.int_params[AC_nx_min];
|
||||
// const int nx_max = mesh->info.int_params[AC_nx_max];
|
||||
// const int ny_min = mesh->info.int_params[AC_ny_min];
|
||||
// const int ny_max = mesh->info.int_params[AC_ny_max];
|
||||
// const int nz_min = mesh->info.int_params[AC_nz_min];
|
||||
// const int nz_max = mesh->info.int_params[AC_nz_max];
|
||||
|
||||
// const double DX = mesh->info.real_params[AC_dsx];
|
||||
// const double DY = mesh->info.real_params[AC_dsy];
|
||||
const double DZ = mesh->info.real_params[AC_dsz];
|
||||
|
||||
const double AMPL_UU = mesh->info.real_params[AC_ampl_uu];
|
||||
const double ANGL_UU = mesh->info.real_params[AC_angl_uu];
|
||||
|
||||
const double zorig = mesh->info.real_params[AC_zorig];
|
||||
double zz;
|
||||
double trans = mesh->info.real_params[AC_trans];
|
||||
|
||||
// const AcReal range = AcReal(.5);
|
||||
|
||||
// const AcReal zmax = AcReal(DZ * (nz_max - nz_min));
|
||||
// const AcReal gaussr = zmax / AcReal(4.0);
|
||||
|
||||
//for (int k = nz_min; k < nz_max; k++) {
|
||||
// for (int j = ny_min; j < ny_max; j++) {
|
||||
// for (int i = nx_min; i < nx_max; i++) {
|
||||
for (int k = 0; k < mz; k++) {
|
||||
for (int j = 0; j < my; j++) {
|
||||
for (int i = 0; i < mx; i++) {
|
||||
int idx = i + j * mx + k * mx * my;
|
||||
zz = DZ * double(k) - zorig;
|
||||
//mesh->vertex_buffer[VTXBUF_UUX][idx] = -AMPL_UU*cos(ANGL_UU);
|
||||
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(-AMPL_UU*cos(ANGL_UU)*fabs(tanh(zz/trans)));
|
||||
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
|
||||
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(-AMPL_UU*sin(ANGL_UU)*tanh(zz/trans));
|
||||
|
||||
//Variarion to density
|
||||
//AcReal rho = exp(mesh->vertex_buffer[VTXBUF_LNRHO][idx]);
|
||||
//NO GAUSSIAN//rho = rho*exp(-(zz/gaussr)*(zz/gaussr));
|
||||
//mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(rho + (range*rho) * (randr() - AcReal(-0.5)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is the initial condition type for the infalling vedge in the pseudodisk
|
||||
// model.
|
||||
void
|
||||
inflow_vedge_freefall(AcMesh* mesh)
|
||||
{
|
||||
const int mx = mesh->info.int_params[AC_mx];
|
||||
const int my = mesh->info.int_params[AC_my];
|
||||
const int mz = mesh->info.int_params[AC_mz];
|
||||
|
||||
// const int nx_min = mesh->info.int_params[AC_nx_min];
|
||||
// const int nx_max = mesh->info.int_params[AC_nx_max];
|
||||
// const int ny_min = mesh->info.int_params[AC_ny_min];
|
||||
// const int ny_max = mesh->info.int_params[AC_ny_max];
|
||||
// const int nz_min = mesh->info.int_params[AC_nz_min];
|
||||
// const int nz_max = mesh->info.int_params[AC_nz_max];
|
||||
|
||||
const double DX = mesh->info.real_params[AC_dsx];
|
||||
// const double DY = mesh->info.real_params[AC_dsy];
|
||||
const double DZ = mesh->info.real_params[AC_dsz];
|
||||
|
||||
// const double AMPL_UU = mesh->info.real_params[AC_ampl_uu];
|
||||
const double ANGL_UU = mesh->info.real_params[AC_angl_uu];
|
||||
const double SQ2GM = mesh->info.real_params[AC_sq2GM_star];
|
||||
// const double GM = mesh->info.real_params[AC_GM_star];
|
||||
// const double M_star = mesh->info.real_params[AC_M_star];
|
||||
// const double G_CONST = mesh->info.real_params[AC_G_CONST];
|
||||
|
||||
// const double unit_length = mesh->info.real_params[AC_unit_length];
|
||||
// const double unit_density = mesh->info.real_params[AC_unit_density];
|
||||
// const double unit_velocity = mesh->info.real_params[AC_unit_velocity];
|
||||
|
||||
const double xorig = mesh->info.real_params[AC_xorig];
|
||||
// const double yorig = mesh->info.real_params[AC_yorig];
|
||||
const double zorig = mesh->info.real_params[AC_zorig];
|
||||
// const double trans = mesh->info.real_params[AC_trans];
|
||||
// double xx, yy, zz, RR;
|
||||
double xx, zz, RR;
|
||||
// double delx, dely, delz;
|
||||
double delx, delz;
|
||||
// double u_x, u_y, u_z, veltot, tanhz;
|
||||
double u_x, u_z, veltot, tanhz;
|
||||
|
||||
const double star_pos_x = mesh->info.real_params[AC_star_pos_x];
|
||||
const double star_pos_z = mesh->info.real_params[AC_star_pos_z];
|
||||
|
||||
for (int k = 0; k < mz; k++) {
|
||||
for (int j = 0; j < my; j++) {
|
||||
for (int i = 0; i < mx; i++) {
|
||||
int idx = i + j * mx + k * mx * my;
|
||||
xx = DX * double(i) - xorig;
|
||||
zz = DZ * double(k) - zorig;
|
||||
|
||||
delx = xx - star_pos_x;
|
||||
delz = zz - star_pos_z;
|
||||
//TODO: Figure out isthis needed. Now a placeholder.
|
||||
//tanhz = fabs(tanh(zz/trans));
|
||||
tanhz = 1.0;
|
||||
|
||||
RR = sqrt(delx*delx + delz*delz);
|
||||
veltot = SQ2GM/sqrt(RR); //Free fall velocity
|
||||
|
||||
//Normal velocity components
|
||||
u_x = - veltot*(delx/RR);
|
||||
u_z = - veltot*(delz/RR);
|
||||
|
||||
//printf("star_pos_z %e, zz %e, delz %e, RR %e\n", star_pos_z, zz, delz, RR);
|
||||
|
||||
//printf("unit_length = %e, unit_density = %e, unit_velocity = %e,\n M_star = %e, G_CONST = %e, GM = %e, SQ2GM = %e, \n RR = %e, u_x = %e, u_z %e\n",
|
||||
// unit_length, unit_density,
|
||||
// unit_velocity, M_star, G_CONST, GM, SQ2GM, RR, u_x, u_z);
|
||||
//printf("%e\n", unit_length*unit_length*unit_length);
|
||||
|
||||
|
||||
//Here including an angel tilt due to pseudodisk
|
||||
if (delz >= 0.0) {
|
||||
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal((u_x*cos(ANGL_UU) - u_z*sin(ANGL_UU))*tanhz);
|
||||
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
|
||||
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal((u_x*sin(ANGL_UU) + u_z*cos(ANGL_UU))*tanhz);
|
||||
} else {
|
||||
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal((u_x*cos(ANGL_UU) + u_z*sin(ANGL_UU))*tanhz);
|
||||
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
|
||||
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal((-u_x*sin(ANGL_UU) + u_z*cos(ANGL_UU))*tanhz);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Only x-direction free fall
|
||||
void
|
||||
inflow_freefall_x(AcMesh* mesh)
|
||||
{
|
||||
const int mx = mesh->info.int_params[AC_mx];
|
||||
const int my = mesh->info.int_params[AC_my];
|
||||
const int mz = mesh->info.int_params[AC_mz];
|
||||
|
||||
const double DX = mesh->info.real_params[AC_dsx];
|
||||
|
||||
const double SQ2GM = mesh->info.real_params[AC_sq2GM_star];
|
||||
// const double G_CONST = mesh->info.real_params[AC_G_CONST];
|
||||
|
||||
const double xorig = mesh->info.real_params[AC_xorig];
|
||||
double xx, RR;
|
||||
double delx;
|
||||
double /*u_x,*/ veltot;
|
||||
|
||||
const double star_pos_x = mesh->info.real_params[AC_star_pos_x];
|
||||
|
||||
const double ampl_lnrho = mesh->info.real_params[AC_ampl_lnrho];
|
||||
|
||||
for (int k = 0; k < mz; k++) {
|
||||
for (int j = 0; j < my; j++) {
|
||||
for (int i = 0; i < mx; i++) {
|
||||
int idx = i + j * mx + k * mx * my;
|
||||
xx = DX * double(i) - xorig;
|
||||
|
||||
delx = xx - star_pos_x;
|
||||
|
||||
RR = fabs(delx);
|
||||
|
||||
veltot = SQ2GM/sqrt(RR); //Free fall velocity
|
||||
|
||||
if (isinf(veltot) == 1) printf("xx %e star_pos_x %e delz %e RR %e veltot %e\n",xx, star_pos_x, delx, RR, veltot);
|
||||
|
||||
//Normal velocity components
|
||||
// u_x = - veltot; // Not used
|
||||
|
||||
//Freefall condition
|
||||
//mesh->vertex_buffer[VTXBUF_UUX][idx] = u_x;
|
||||
//mesh->vertex_buffer[VTXBUF_UUY][idx] = 0.0;
|
||||
//mesh->vertex_buffer[VTXBUF_UUZ][idx] = 0.0;
|
||||
|
||||
//Starting with steady state
|
||||
mesh->vertex_buffer[VTXBUF_UUX][idx] = 0.0;
|
||||
mesh->vertex_buffer[VTXBUF_UUY][idx] = 0.0;
|
||||
mesh->vertex_buffer[VTXBUF_UUZ][idx] = 0.0;
|
||||
|
||||
mesh->vertex_buffer[VTXBUF_LNRHO][idx] = AcReal(ampl_lnrho);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void
|
||||
gaussian_radial_explosion(AcMesh* mesh)
|
||||
{
|
||||
AcReal* uu_x = mesh->vertex_buffer[VTXBUF_UUX];
|
||||
AcReal* uu_y = mesh->vertex_buffer[VTXBUF_UUY];
|
||||
AcReal* uu_z = mesh->vertex_buffer[VTXBUF_UUZ];
|
||||
|
||||
const int mx = mesh->info.int_params[AC_mx];
|
||||
const int my = mesh->info.int_params[AC_my];
|
||||
|
||||
const int nx_min = mesh->info.int_params[AC_nx_min];
|
||||
const int nx_max = mesh->info.int_params[AC_nx_max];
|
||||
const int ny_min = mesh->info.int_params[AC_ny_min];
|
||||
const int ny_max = mesh->info.int_params[AC_ny_max];
|
||||
const int nz_min = mesh->info.int_params[AC_nz_min];
|
||||
const int nz_max = mesh->info.int_params[AC_nz_max];
|
||||
|
||||
const double DX = mesh->info.real_params[AC_dsx];
|
||||
const double DY = mesh->info.real_params[AC_dsy];
|
||||
const double DZ = mesh->info.real_params[AC_dsz];
|
||||
|
||||
const double xorig = double(XORIG) - 0.000001;
|
||||
const double yorig = double(YORIG) - 0.000001;
|
||||
const double zorig = double(ZORIG) - 0.000001;
|
||||
|
||||
const double INIT_LOC_UU_X = 0.0;
|
||||
const double INIT_LOC_UU_Y = 0.0;
|
||||
const double INIT_LOC_UU_Z = 0.0;
|
||||
|
||||
const double AMPL_UU = mesh->info.real_params[AC_ampl_uu];
|
||||
const double UU_SHELL_R = 0.8;
|
||||
const double WIDTH_UU = 0.2;
|
||||
|
||||
// Outward explosion with gaussian initial velocity profile.
|
||||
int idx;
|
||||
double xx, yy, zz, rr2, rr, theta = 0.0, phi = 0.0;
|
||||
double uu_radial;
|
||||
|
||||
// double theta_old = 0.0;
|
||||
|
||||
for (int k = nz_min; k < nz_max; k++) {
|
||||
for (int j = ny_min; j < ny_max; j++) {
|
||||
for (int i = nx_min; i < nx_max; i++) {
|
||||
// Calculate the value of velocity in a particular radius.
|
||||
idx = i + j * mx + k * mx * my;
|
||||
// Determine the coordinates
|
||||
xx = DX * (i - nx_min) - xorig;
|
||||
xx = xx - INIT_LOC_UU_X;
|
||||
|
||||
yy = DY * (j - ny_min) - yorig;
|
||||
yy = yy - INIT_LOC_UU_Y;
|
||||
|
||||
zz = DZ * (k - nz_min) - zorig;
|
||||
zz = zz - INIT_LOC_UU_Z;
|
||||
|
||||
rr2 = pow(xx, 2.0) + pow(yy, 2.0) + pow(zz, 2.0);
|
||||
rr = sqrt(rr2);
|
||||
|
||||
// Origin is different!
|
||||
double xx_abs, yy_abs, zz_abs;
|
||||
if (rr > 0.0) {
|
||||
// theta range [0, PI]
|
||||
if (zz >= 0.0) {
|
||||
theta = acos(zz / rr);
|
||||
if (theta > M_PI / 2.0 || theta < 0.0) {
|
||||
printf("Explosion THETA WRONG: zz = %.3f, rr = "
|
||||
"%.3f, theta = %.3e/PI, M_PI = %.3e\n",
|
||||
zz, rr, theta / M_PI, M_PI);
|
||||
}
|
||||
}
|
||||
else {
|
||||
zz_abs = -zz; // Needs a posite value for acos
|
||||
theta = M_PI - acos(zz_abs / rr);
|
||||
if (theta < M_PI / 2.0 || theta > 2 * M_PI) {
|
||||
printf("Explosion THETA WRONG: zz = %.3f, rr = "
|
||||
"%.3f, theta = %.3e/PI, M_PI = %.3e\n",
|
||||
zz, rr, theta / M_PI, M_PI);
|
||||
}
|
||||
}
|
||||
|
||||
// phi range [0, 2*PI]i
|
||||
if (xx != 0.0) {
|
||||
if (xx < 0.0 && yy >= 0.0) {
|
||||
//-+
|
||||
xx_abs = -xx; // Needs a posite value for atan
|
||||
phi = M_PI - atan(yy / xx_abs);
|
||||
if (phi < (M_PI / 2.0) || phi > M_PI) {
|
||||
printf("Explosion PHI WRONG -+: xx = %.3f, yy "
|
||||
"= %.3f, phi = %.3e/PI, M_PI = %.3e\n",
|
||||
xx, yy, phi / M_PI, M_PI);
|
||||
}
|
||||
}
|
||||
else if (xx > 0.0 && yy < 0.0) {
|
||||
//+-
|
||||
yy_abs = -yy;
|
||||
phi = 2.0 * M_PI - atan(yy_abs / xx);
|
||||
if (phi < (3.0 * M_PI) / 2.0 ||
|
||||
phi > (2.0 * M_PI + 1e-6)) {
|
||||
printf("Explosion PHI WRONG +-: xx = %.3f, yy "
|
||||
"= %.3f, phi = %.3e/PI, M_PI = %.3e\n",
|
||||
xx, yy, phi / M_PI, M_PI);
|
||||
}
|
||||
}
|
||||
else if (xx < 0.0 && yy < 0.0) {
|
||||
//--
|
||||
yy_abs = -yy;
|
||||
xx_abs = -xx;
|
||||
phi = M_PI + atan(yy_abs / xx_abs);
|
||||
if (phi < M_PI ||
|
||||
phi > ((3.0 * M_PI) / 2.0 + 1e-6)) {
|
||||
printf("Explosion PHI WRONG --: xx = %.3f, yy "
|
||||
"= %.3f, xx_abs = %.3f, yy_abs = %.3f, "
|
||||
"phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
|
||||
xx, yy, xx_abs, yy_abs, phi,
|
||||
(3.0 * M_PI) / 2.0);
|
||||
}
|
||||
}
|
||||
else {
|
||||
//++
|
||||
phi = atan(yy / xx);
|
||||
if (phi < 0 || phi > M_PI / 2.0) {
|
||||
printf(
|
||||
"Explosion PHI WRONG --: xx = %.3f, yy = "
|
||||
"%.3f, phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
|
||||
xx, yy, phi, (3.0 * M_PI) / 2.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
else { // To avoid div by zero with atan
|
||||
if (yy > 0.0) {
|
||||
phi = M_PI / 2.0;
|
||||
}
|
||||
else if (yy < 0.0) {
|
||||
phi = (3.0 * M_PI) / 2.0;
|
||||
}
|
||||
else {
|
||||
phi = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Set zero for explicit safekeeping
|
||||
if (xx == 0.0 && yy == 0.0) {
|
||||
phi = 0.0;
|
||||
}
|
||||
|
||||
// Gaussian velocity
|
||||
// uu_radial = AMPL_UU*exp( -rr2 / (2.0*pow(WIDTH_UU, 2.0))
|
||||
// ); New distribution, where that gaussion wave is not in
|
||||
// the exact centre coordinates uu_radial = AMPL_UU*exp(
|
||||
// -pow((rr - 4.0*WIDTH_UU),2.0) / (2.0*pow(WIDTH_UU, 2.0))
|
||||
// ); //TODO: Parametrize the peak location.
|
||||
uu_radial = AMPL_UU * exp(-pow((rr - UU_SHELL_R), 2.0) /
|
||||
(2.0 * pow(WIDTH_UU, 2.0)));
|
||||
}
|
||||
else {
|
||||
uu_radial = 0.0; // TODO: There will be a discontinuity in
|
||||
// the origin... Should the shape of the
|
||||
// distribution be different?
|
||||
}
|
||||
|
||||
// Determine the carthesian velocity components and lnrho
|
||||
uu_x[idx] = AcReal(uu_radial * sin(theta) * cos(phi));
|
||||
uu_y[idx] = AcReal(uu_radial * sin(theta) * sin(phi));
|
||||
uu_z[idx] = AcReal(uu_radial * cos(theta));
|
||||
|
||||
// Temporary diagnosticv output (TODO: Remove after not needed)
|
||||
// if (theta > theta_old) {
|
||||
// if (theta > M_PI || theta < 0.0 || phi < 0.0 || phi > 2*M_PI)
|
||||
// {
|
||||
/* printf("Explosion: xx = %.3f, yy = %.3f, zz = %.3f, rr =
|
||||
%.3f, phi = %.3e/PI, theta = %.3e/PI\n, M_PI = %.3e", xx, yy,
|
||||
zz, rr, phi/M_PI, theta/M_PI, M_PI); printf(" uu_radial =
|
||||
%.3e, uu_x[%i] = %.3e, uu_y[%i] = %.3e, uu_z[%i] = %.3e \n",
|
||||
uu_radial, idx, uu_x[idx], idx, uu_y[idx], idx,
|
||||
uu_z[idx]); theta_old = theta;
|
||||
*/
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
acmesh_init_to(const InitType& init_type, AcMesh* mesh)
|
||||
{
|
||||
srand(123456789);
|
||||
|
||||
|
||||
const int n = AC_VTXBUF_SIZE(mesh->info);
|
||||
|
||||
const int mx = mesh->info.int_params[AC_mx];
|
||||
const int my = mesh->info.int_params[AC_my];
|
||||
const int mz = mesh->info.int_params[AC_mz];
|
||||
|
||||
const int nx_min = mesh->info.int_params[AC_nx_min];
|
||||
const int nx_max = mesh->info.int_params[AC_nx_max];
|
||||
const int ny_min = mesh->info.int_params[AC_ny_min];
|
||||
const int ny_max = mesh->info.int_params[AC_ny_max];
|
||||
const int nz_min = mesh->info.int_params[AC_nz_min];
|
||||
const int nz_max = mesh->info.int_params[AC_nz_max];
|
||||
|
||||
switch (init_type) {
|
||||
case INIT_TYPE_RANDOM: {
|
||||
acmesh_clear(mesh);
|
||||
const AcReal range = AcReal(0.01);
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
for (int i = 0; i < n; ++i)
|
||||
mesh->vertex_buffer[w][i] = 2 * range * randr() - range;
|
||||
|
||||
break;
|
||||
}
|
||||
case INIT_TYPE_GAUSSIAN_RADIAL_EXPL:
|
||||
acmesh_clear(mesh);
|
||||
//acmesh_init_to(INIT_TYPE_RANDOM, mesh);
|
||||
gaussian_radial_explosion(mesh);
|
||||
|
||||
break;
|
||||
case INIT_TYPE_XWAVE:
|
||||
acmesh_clear(mesh);
|
||||
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
|
||||
for (int k = 0; k < mz; k++) {
|
||||
for (int j = 0; j < my; j++) {
|
||||
for (int i = 0; i < mx; i++) {
|
||||
int idx = i + j * mx + k * mx * my;
|
||||
mesh->vertex_buffer[VTXBUF_UUX][idx] = 2*AcReal(sin(j * AcReal(M_PI) / mx)) - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case INIT_TYPE_VEDGE:
|
||||
acmesh_clear(mesh);
|
||||
inflow_vedge_freefall(mesh);
|
||||
break;
|
||||
case INIT_TYPE_VEDGEX:
|
||||
acmesh_clear(mesh);
|
||||
inflow_freefall_x(mesh);
|
||||
break;
|
||||
case INIT_TYPE_RAYLEIGH_TAYLOR:
|
||||
acmesh_clear(mesh);
|
||||
inflow_freefall_x(mesh);
|
||||
lnrho_step(mesh);
|
||||
break;
|
||||
case INIT_TYPE_ABC_FLOW: {
|
||||
acmesh_clear(mesh);
|
||||
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
|
||||
for (int k = nz_min; k < nz_max; k++) {
|
||||
for (int j = ny_min; j < ny_max; j++) {
|
||||
for (int i = nx_min; i < nx_max; i++) {
|
||||
const int idx = i + j * mx + k * mx * my;
|
||||
|
||||
/*
|
||||
const double xx = double(
|
||||
mesh->info.real_params[AC_dsx] *
|
||||
(i - mesh->info.int_params[AC_nx_min]) -
|
||||
XORIG + AcReal(.5) * mesh->info.real_params[AC_dsx]);
|
||||
const double yy = double(
|
||||
mesh->info.real_params[AC_dsy] *
|
||||
(j - mesh->info.int_params[AC_ny_min]) -
|
||||
YORIG + AcReal(.5) * mesh->info.real_params[AC_dsy]);
|
||||
const double zz = double(
|
||||
mesh->info.real_params[AC_dsz] *
|
||||
(k - mesh->info.int_params[AC_nz_min]) -
|
||||
ZORIG + AcReal(.5) * mesh->info.real_params[AC_dsz]);
|
||||
*/
|
||||
|
||||
const AcReal xx = (i - nx_min) * mesh->info.real_params[AC_dsx] - XORIG;
|
||||
const AcReal yy = (j - ny_min) * mesh->info.real_params[AC_dsy] - YORIG;
|
||||
const AcReal zz = (k - nz_min) * mesh->info.real_params[AC_dsz] - ZORIG;
|
||||
|
||||
const AcReal ampl_uu = 0.5;
|
||||
const AcReal ABC_A = 1.;
|
||||
const AcReal ABC_B = 1.;
|
||||
const AcReal ABC_C = 1.;
|
||||
const AcReal kx_uu = 8.;
|
||||
const AcReal ky_uu = 8.;
|
||||
const AcReal kz_uu = 8.;
|
||||
|
||||
mesh->vertex_buffer[VTXBUF_UUX][idx] = ampl_uu * (ABC_A * (AcReal)sin(kz_uu * zz) + ABC_C * (AcReal)cos(ky_uu * yy));
|
||||
mesh->vertex_buffer[VTXBUF_UUY][idx] = ampl_uu * (ABC_B * (AcReal)sin(kx_uu * xx) + ABC_A * (AcReal)cos(kz_uu * zz));
|
||||
mesh->vertex_buffer[VTXBUF_UUZ][idx] = ampl_uu * (ABC_C * (AcReal)sin(ky_uu * yy) + ABC_B * (AcReal)cos(kx_uu * xx));
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case INIT_TYPE_RAYLEIGH_BENARD: {
|
||||
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
|
||||
#if LTEMPERATURE
|
||||
vertex_buffer_set(VTXBUF_LNRHO, 1, mesh);
|
||||
const AcReal range = AcReal(0.9);
|
||||
for (int k = nz_min; k < nz_max; k++) {
|
||||
for (int j = ny_min; j < ny_max; j++) {
|
||||
for (int i = nx_min; i < nx_max; i++) {
|
||||
const int idx = i + j * mx + k * mx * my;
|
||||
mesh->vertex_buffer[VTXBUF_TEMPERATURE][idx] = (range * (k - nz_min)) / mesh->info.int_params[AC_nz] + 0.1;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
WARNING("INIT_TYPE_RAYLEIGH_BERNARD called even though VTXBUF_TEMPERATURE is not used");
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
default:
|
||||
ERROR("Unknown init_type");
|
||||
}
|
||||
|
||||
AcReal max_val = AcReal(-1e-32);
|
||||
AcReal min_val = AcReal(1e32);
|
||||
// Normalize the grid
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
if (mesh->vertex_buffer[w][i] < min_val)
|
||||
min_val = mesh->vertex_buffer[w][i];
|
||||
if (mesh->vertex_buffer[w][i] > max_val)
|
||||
max_val = mesh->vertex_buffer[w][i];
|
||||
}
|
||||
}
|
||||
printf("MAX: %f MIN %f\n", double(max_val), double(min_val));
|
||||
/*
|
||||
const AcReal inv_range = AcReal(1.) / fabs(max_val - min_val);
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
mesh->vertex_buffer[w][i] = 2*inv_range*(mesh->vertex_buffer[w][i] - min_val) - 1;
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void
|
||||
acmesh_destroy(AcMesh* mesh)
|
||||
{
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
free(mesh->vertex_buffer[VertexBufferHandle(i)]);
|
||||
|
||||
free(mesh);
|
||||
}
|
||||
|
||||
|
||||
ModelMesh*
|
||||
modelmesh_create(const AcMeshInfo& mesh_info)
|
||||
{
|
||||
ModelMesh* mesh = (ModelMesh*)malloc(sizeof(*mesh));
|
||||
mesh->info = mesh_info;
|
||||
|
||||
const size_t bytes = AC_VTXBUF_SIZE(mesh->info) * sizeof(mesh->vertex_buffer[0][0]);
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
mesh->vertex_buffer[VertexBufferHandle(i)] = (ModelScalar*)malloc(bytes);
|
||||
ERRCHK(mesh->vertex_buffer[VertexBufferHandle(i)] != NULL);
|
||||
}
|
||||
|
||||
return mesh;
|
||||
}
|
||||
|
||||
void
|
||||
modelmesh_destroy(ModelMesh* mesh)
|
||||
{
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
free(mesh->vertex_buffer[VertexBufferHandle(i)]);
|
||||
|
||||
free(mesh);
|
||||
}
|
||||
|
||||
#include <string.h> // memcpy
|
||||
void
|
||||
acmesh_to_modelmesh(const AcMesh& acmesh, ModelMesh* modelmesh)
|
||||
{
|
||||
ERRCHK(sizeof(acmesh.info) == sizeof(modelmesh->info));
|
||||
memcpy(&modelmesh->info, &acmesh.info, sizeof(acmesh.info));
|
||||
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
for (size_t j = 0; j < AC_VTXBUF_SIZE(acmesh.info); ++j)
|
||||
modelmesh->vertex_buffer[i][j] = (ModelScalar)acmesh.vertex_buffer[i][j];
|
||||
}
|
||||
|
||||
void
|
||||
modelmesh_to_acmesh(const ModelMesh& modelmesh, AcMesh* acmesh)
|
||||
{
|
||||
ERRCHK(sizeof(acmesh->info) == sizeof(modelmesh.info));
|
||||
memcpy(&acmesh->info, &modelmesh.info, sizeof(modelmesh.info));
|
||||
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
for (size_t j = 0; j < AC_VTXBUF_SIZE(modelmesh.info); ++j)
|
||||
acmesh->vertex_buffer[i][j] = (AcReal)modelmesh.vertex_buffer[i][j];
|
||||
}
|
58
src/standalone/model/host_memory.h
Normal file
58
src/standalone/model/host_memory.h
Normal file
@@ -0,0 +1,58 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
#include "modelmesh.h"
|
||||
|
||||
// clang-format off
|
||||
#define AC_FOR_INIT_TYPES(FUNC)\
|
||||
FUNC(INIT_TYPE_RANDOM), \
|
||||
FUNC(INIT_TYPE_XWAVE), \
|
||||
FUNC(INIT_TYPE_GAUSSIAN_RADIAL_EXPL), \
|
||||
FUNC(INIT_TYPE_ABC_FLOW) , \
|
||||
FUNC(INIT_TYPE_VEDGE), \
|
||||
FUNC(INIT_TYPE_VEDGEX), \
|
||||
FUNC(INIT_TYPE_RAYLEIGH_TAYLOR), \
|
||||
FUNC(INIT_TYPE_RAYLEIGH_BENARD)
|
||||
// clang-format on
|
||||
|
||||
typedef enum { AC_FOR_INIT_TYPES(AC_GEN_ID), NUM_INIT_TYPES } InitType;
|
||||
|
||||
extern const char* init_type_names[]; // Defined in host_memory.cc
|
||||
|
||||
AcMesh* acmesh_create(const AcMeshInfo& mesh_info);
|
||||
|
||||
void acmesh_clear(AcMesh* mesh);
|
||||
|
||||
void acmesh_init_to(const InitType& type, AcMesh* mesh);
|
||||
|
||||
void acmesh_destroy(AcMesh* mesh);
|
||||
|
||||
ModelMesh* modelmesh_create(const AcMeshInfo& mesh_info);
|
||||
void modelmesh_destroy(ModelMesh* mesh);
|
||||
void acmesh_to_modelmesh(const AcMesh& acmesh, ModelMesh* modelmesh);
|
||||
void modelmesh_to_acmesh(const ModelMesh& model, AcMesh* acmesh);
|
63
src/standalone/model/host_timestep.cc
Normal file
63
src/standalone/model/host_timestep.cc
Normal file
@@ -0,0 +1,63 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "host_timestep.h"
|
||||
|
||||
#include "core/math_utils.h"
|
||||
|
||||
static AcReal timescale = AcReal(1.0);
|
||||
|
||||
AcReal
|
||||
host_timestep(const AcReal& umax, const AcMeshInfo& mesh_info)
|
||||
{
|
||||
const long double cdt = mesh_info.real_params[AC_cdt];
|
||||
const long double cdtv = mesh_info.real_params[AC_cdtv];
|
||||
// const long double cdts = mesh_info.real_params[AC_cdts];
|
||||
const long double cs2_sound = mesh_info.real_params[AC_cs2_sound];
|
||||
const long double nu_visc = mesh_info.real_params[AC_nu_visc];
|
||||
const long double eta = mesh_info.real_params[AC_eta];
|
||||
const long double chi = 0; // mesh_info.real_params[AC_chi]; // TODO not calculated
|
||||
const long double gamma = mesh_info.real_params[AC_gamma];
|
||||
const long double dsmin = mesh_info.real_params[AC_dsmin];
|
||||
|
||||
// Old ones from legacy Astaroth
|
||||
//const long double uu_dt = cdt * (dsmin / (umax + cs_sound));
|
||||
//const long double visc_dt = cdtv * dsmin * dsmin / nu_visc;
|
||||
|
||||
// New, closer to the actual Courant timestep
|
||||
// See Pencil Code user manual p. 38 (timestep section)
|
||||
const long double uu_dt = cdt * dsmin / (fabsl(umax) + sqrtl(cs2_sound + 0.0l));
|
||||
const long double visc_dt = cdtv * dsmin * dsmin / max(max(nu_visc, eta), max(gamma, chi)) + 1; // TODO NOTE: comment the +1 out to get scientifically accurate results
|
||||
|
||||
const long double dt = min(uu_dt, visc_dt);
|
||||
return AcReal(timescale) * AcReal(dt);
|
||||
}
|
||||
|
||||
void
|
||||
set_timescale(const AcReal scale)
|
||||
{
|
||||
timescale = scale;
|
||||
}
|
32
src/standalone/model/host_timestep.h
Normal file
32
src/standalone/model/host_timestep.h
Normal file
@@ -0,0 +1,32 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
|
||||
AcReal host_timestep(const AcReal& umax, const AcMeshInfo& mesh_info);
|
||||
|
||||
void set_timescale(const AcReal scale);
|
487
src/standalone/model/model_boundconds.cc
Normal file
487
src/standalone/model/model_boundconds.cc
Normal file
@@ -0,0 +1,487 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) amy later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT Amy WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "model_boundconds.h"
|
||||
|
||||
#include "core/errchk.h"
|
||||
|
||||
|
||||
void
|
||||
boundconds(const AcMeshInfo& mesh_info, ModelMesh* mesh)
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
|
||||
const int3 start = (int3){0, 0, 0};
|
||||
const int3 end = (int3){
|
||||
mesh_info.int_params[AC_mx],
|
||||
mesh_info.int_params[AC_my],
|
||||
mesh_info.int_params[AC_mz]
|
||||
};
|
||||
|
||||
const int nx = mesh_info.int_params[AC_nx];
|
||||
const int ny = mesh_info.int_params[AC_ny];
|
||||
const int nz = mesh_info.int_params[AC_nz];
|
||||
|
||||
const int nx_min = mesh_info.int_params[AC_nx_min];
|
||||
const int ny_min = mesh_info.int_params[AC_ny_min];
|
||||
const int nz_min = mesh_info.int_params[AC_nz_min];
|
||||
|
||||
// The old kxt was inclusive, but our mx_max is exclusive
|
||||
const int nx_max = mesh_info.int_params[AC_nx_max];
|
||||
const int ny_max = mesh_info.int_params[AC_ny_max];
|
||||
const int nz_max = mesh_info.int_params[AC_nz_max];
|
||||
|
||||
for (int k_dst = start.z; k_dst < end.z; ++k_dst) {
|
||||
for (int j_dst = start.y; j_dst < end.y; ++j_dst) {
|
||||
for (int i_dst = start.x; i_dst < end.x; ++i_dst) {
|
||||
|
||||
// If destination index is inside the computational domain, return since
|
||||
// the boundary conditions are only applied to the ghost zones
|
||||
if (i_dst >= nx_min && i_dst < nx_max &&
|
||||
j_dst >= ny_min && j_dst < ny_max &&
|
||||
k_dst >= nz_min && k_dst < nz_max)
|
||||
continue;
|
||||
|
||||
// Find the source index
|
||||
// Map to nx, ny, nz coordinates
|
||||
int i_src = i_dst - nx_min;
|
||||
int j_src = j_dst - ny_min;
|
||||
int k_src = k_dst - nz_min;
|
||||
|
||||
// Translate (s.t. the index is always positive)
|
||||
i_src += nx;
|
||||
j_src += ny;
|
||||
k_src += nz;
|
||||
|
||||
// Wrap
|
||||
i_src %= nx;
|
||||
j_src %= ny;
|
||||
k_src %= nz;
|
||||
|
||||
// Map to mx, my, mz coordinates
|
||||
i_src += nx_min;
|
||||
j_src += ny_min;
|
||||
k_src += nz_min;
|
||||
|
||||
const size_t src_idx = AC_VTXBUF_IDX(i_src, j_src, k_src, mesh_info);
|
||||
const size_t dst_idx = AC_VTXBUF_IDX(i_dst, j_dst, k_dst, mesh_info);
|
||||
ERRCHK(src_idx < AC_VTXBUF_SIZE(mesh_info));
|
||||
ERRCHK(dst_idx < AC_VTXBUF_SIZE(mesh_info));
|
||||
mesh->vertex_buffer[w][dst_idx] = mesh->vertex_buffer[w][src_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
void
|
||||
boundconds(const AcMeshInfo& mesh_info, ModelMesh* mesh)
|
||||
{
|
||||
const int mx = mesh_info.int_params[AC_mx];
|
||||
const int my = mesh_info.int_params[AC_my];
|
||||
const int mz = mesh_info.int_params[AC_mz];
|
||||
|
||||
// Volatile here suppresses the warning about strict-overflow (i.e. compiler
|
||||
// wanted to optimize these loops by assuming that kxb etc never overflow)
|
||||
// However we do not need the performance improvement (~1-3%) and it's
|
||||
// not either good to
|
||||
// a) get useless warnings originating from here
|
||||
// b) disable the warnings completely
|
||||
volatile const int kxb = mesh_info.int_params[AC_nx_min];
|
||||
volatile const int kyb = mesh_info.int_params[AC_ny_min];
|
||||
volatile const int kzb = mesh_info.int_params[AC_nz_min];
|
||||
|
||||
// The old kxt was inclusive, but our mx_max is exclusive
|
||||
volatile const int kxt = mesh_info.int_params[AC_nx_max] - 1;
|
||||
volatile const int kyt = mesh_info.int_params[AC_ny_max] - 1;
|
||||
volatile const int kzt = mesh_info.int_params[AC_nz_max] - 1;
|
||||
const int bound[3] = {0, 0, 0};
|
||||
|
||||
// Periodic boundary conditions
|
||||
if (bound[0] == 0) {
|
||||
for (int k = kzb; k <= kzt; k++) {
|
||||
for (int j = kyb; j <= kyt; j++) {
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (kxt + i - 2) + j * mx + k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - kxt + 2) + j * mx + k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (bound[1] == 0) {
|
||||
for (int k = kzb; k <= kzt; k++) {
|
||||
for (int i = kxb; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + (kyt + j - 2) * mx + k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + (j - kyt + 2) * mx + k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (bound[2] == 0) {
|
||||
for (int i = kxb; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + j * mx + (kzt + k - 2) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + j * mx + (k - kzt + 2) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy the corners in the fully periodic case
|
||||
if (bound[0] == 0 && bound[1] == 0 && bound[2] == 0) {
|
||||
// Source corner: x=0, y=0, z=0
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=1, y=0, z=0
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=0, y=1, z=0
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=0, y=0, z=1
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=1, y=1, z=0
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=1, y=0, z=1
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=0, y=1, z=1
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source corner: x=1, y=1, z=1
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
ERROR("ONLY FULLY PERIODIC WORKS WITH CORNERS SO FAR! \n");
|
||||
}
|
||||
|
||||
// Copy the edges in the fully periodic case
|
||||
if (bound[0] == 0 && bound[1] == 0 && bound[2] == 0) {
|
||||
// Source edge: x = 0, y = 0
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzb; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
|
||||
k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 1, y = 0
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzb; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
|
||||
k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 0, y = 1
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
|
||||
k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 1, y = 1
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
|
||||
k * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 0, z = 0
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyb; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + j * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 1, z = 0
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + j * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 0, z = 1
|
||||
for (int i = kxb; i <= kxb + 2; i++) {
|
||||
for (int j = kyb; j <= kyt; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i + mx - STENCIL_ORDER) + j * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: x = 1, z = 1
|
||||
for (int i = kxt - 2; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyt; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = (i - mx + STENCIL_ORDER) + j * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: y = 0, z = 0
|
||||
for (int i = kxb; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + (j + my - STENCIL_ORDER) * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: y = 1, z = 0
|
||||
for (int i = kxb; i <= kxt; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzb; k <= kzb + 2; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + (j - my + STENCIL_ORDER) * mx +
|
||||
(k + mz - STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: y = 0, z = 1
|
||||
for (int i = kxb; i <= kxt; i++) {
|
||||
for (int j = kyb; j <= kyb + 2; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + (j + my - STENCIL_ORDER) * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
// Source edge: y = 1, z = 1
|
||||
for (int i = kxb; i <= kxt; i++) {
|
||||
for (int j = kyt - 2; j <= kyt; j++) {
|
||||
for (int k = kzt - 2; k <= kzt; k++) {
|
||||
const int inds = i + j * mx + k * mx * my;
|
||||
const int indr = i + (j - my + STENCIL_ORDER) * mx +
|
||||
(k - mz + STENCIL_ORDER) * mx * my;
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
|
||||
mesh->vertex_buffer[w]
|
||||
[indr] = mesh->vertex_buffer[w]
|
||||
[inds];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
ERROR("ONLY FULLY PERIODIC WORKS WITH EDGES SO FAR! \n");
|
||||
}
|
||||
}
|
||||
#endif
|
31
src/standalone/model/model_boundconds.h
Normal file
31
src/standalone/model/model_boundconds.h
Normal file
@@ -0,0 +1,31 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
#include "modelmesh.h"
|
||||
|
||||
void boundconds(const AcMeshInfo& mesh_info, ModelMesh* mesh);
|
353
src/standalone/model/model_diff.h
Normal file
353
src/standalone/model/model_diff.h
Normal file
@@ -0,0 +1,353 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "core/errchk.h"
|
||||
|
||||
typedef long double MODEL_REAL;
|
||||
|
||||
typedef enum { AXIS_X, AXIS_Y, AXIS_Z, NUM_AXIS_TYPES } AxisType;
|
||||
|
||||
template <AxisType axis>
|
||||
static inline MODEL_REAL
|
||||
der_scal(const int& i, const int& j, const int& k, const AcMeshInfo& mesh_info,
|
||||
const MODEL_REAL* scal)
|
||||
{
|
||||
MODEL_REAL f0, f1, f2, f4, f5, f6;
|
||||
MODEL_REAL ds;
|
||||
|
||||
switch (axis) {
|
||||
case AXIS_X:
|
||||
f0 = scal[AC_VTXBUF_IDX(i - 3, j, k, mesh_info)];
|
||||
f1 = scal[AC_VTXBUF_IDX(i - 2, j, k, mesh_info)];
|
||||
f2 = scal[AC_VTXBUF_IDX(i - 1, j, k, mesh_info)];
|
||||
f4 = scal[AC_VTXBUF_IDX(i + 1, j, k, mesh_info)];
|
||||
f5 = scal[AC_VTXBUF_IDX(i + 2, j, k, mesh_info)];
|
||||
f6 = scal[AC_VTXBUF_IDX(i + 3, j, k, mesh_info)];
|
||||
ds = mesh_info.real_params[AC_dsx];
|
||||
break;
|
||||
case AXIS_Y:
|
||||
f0 = scal[AC_VTXBUF_IDX(i, j - 3, k, mesh_info)];
|
||||
f1 = scal[AC_VTXBUF_IDX(i, j - 2, k, mesh_info)];
|
||||
f2 = scal[AC_VTXBUF_IDX(i, j - 1, k, mesh_info)];
|
||||
f4 = scal[AC_VTXBUF_IDX(i, j + 1, k, mesh_info)];
|
||||
f5 = scal[AC_VTXBUF_IDX(i, j + 2, k, mesh_info)];
|
||||
f6 = scal[AC_VTXBUF_IDX(i, j + 3, k, mesh_info)];
|
||||
ds = mesh_info.real_params[AC_dsy];
|
||||
break;
|
||||
case AXIS_Z:
|
||||
f0 = scal[AC_VTXBUF_IDX(i, j, k - 3, mesh_info)];
|
||||
f1 = scal[AC_VTXBUF_IDX(i, j, k - 2, mesh_info)];
|
||||
f2 = scal[AC_VTXBUF_IDX(i, j, k - 1, mesh_info)];
|
||||
f4 = scal[AC_VTXBUF_IDX(i, j, k + 1, mesh_info)];
|
||||
f5 = scal[AC_VTXBUF_IDX(i, j, k + 2, mesh_info)];
|
||||
f6 = scal[AC_VTXBUF_IDX(i, j, k + 3, mesh_info)];
|
||||
ds = mesh_info.real_params[AC_dsz];
|
||||
break;
|
||||
default:
|
||||
ERROR("Unknown axis type");
|
||||
}
|
||||
return ((f6 - f0) + MODEL_REAL(-9.) * (f5 - f1) + MODEL_REAL(45.) * (f4 - f2)) /
|
||||
(MODEL_REAL(60.) * ds);
|
||||
}
|
||||
|
||||
template <AxisType axis>
|
||||
static inline MODEL_REAL
|
||||
der2_scal(const int& i, const int& j, const int& k, const AcMeshInfo& mesh_info,
|
||||
const MODEL_REAL* scal)
|
||||
{
|
||||
MODEL_REAL f0, f1, f2, f3, f4, f5, f6;
|
||||
MODEL_REAL ds;
|
||||
|
||||
f3 = scal[AC_VTXBUF_IDX(i, j, k, mesh_info)];
|
||||
|
||||
switch (axis) {
|
||||
case AXIS_X:
|
||||
f0 = scal[AC_VTXBUF_IDX(i - 3, j, k, mesh_info)];
|
||||
f1 = scal[AC_VTXBUF_IDX(i - 2, j, k, mesh_info)];
|
||||
f2 = scal[AC_VTXBUF_IDX(i - 1, j, k, mesh_info)];
|
||||
f4 = scal[AC_VTXBUF_IDX(i + 1, j, k, mesh_info)];
|
||||
f5 = scal[AC_VTXBUF_IDX(i + 2, j, k, mesh_info)];
|
||||
f6 = scal[AC_VTXBUF_IDX(i + 3, j, k, mesh_info)];
|
||||
ds = mesh_info.real_params[AC_dsx];
|
||||
break;
|
||||
case AXIS_Y:
|
||||
f0 = scal[AC_VTXBUF_IDX(i, j - 3, k, mesh_info)];
|
||||
f1 = scal[AC_VTXBUF_IDX(i, j - 2, k, mesh_info)];
|
||||
f2 = scal[AC_VTXBUF_IDX(i, j - 1, k, mesh_info)];
|
||||
f4 = scal[AC_VTXBUF_IDX(i, j + 1, k, mesh_info)];
|
||||
f5 = scal[AC_VTXBUF_IDX(i, j + 2, k, mesh_info)];
|
||||
f6 = scal[AC_VTXBUF_IDX(i, j + 3, k, mesh_info)];
|
||||
ds = mesh_info.real_params[AC_dsy];
|
||||
break;
|
||||
case AXIS_Z:
|
||||
f0 = scal[AC_VTXBUF_IDX(i, j, k - 3, mesh_info)];
|
||||
f1 = scal[AC_VTXBUF_IDX(i, j, k - 2, mesh_info)];
|
||||
f2 = scal[AC_VTXBUF_IDX(i, j, k - 1, mesh_info)];
|
||||
f4 = scal[AC_VTXBUF_IDX(i, j, k + 1, mesh_info)];
|
||||
f5 = scal[AC_VTXBUF_IDX(i, j, k + 2, mesh_info)];
|
||||
f6 = scal[AC_VTXBUF_IDX(i, j, k + 3, mesh_info)];
|
||||
ds = mesh_info.real_params[AC_dsz];
|
||||
break;
|
||||
default:
|
||||
ERROR("Unknown axis type");
|
||||
}
|
||||
return (MODEL_REAL(2.) * (f0 + f6) + MODEL_REAL(-27.) * (f1 + f5) +
|
||||
MODEL_REAL(270.) * (f2 + f4) + MODEL_REAL(-490.) * f3) /
|
||||
(MODEL_REAL(180.) * ds * ds);
|
||||
}
|
||||
|
||||
static MODEL_REAL
|
||||
laplace_scal(const int& i, const int& j, const int& k,
|
||||
const AcMeshInfo& mesh_info, const MODEL_REAL* scal)
|
||||
{
|
||||
return der2_scal<AXIS_X>(i, j, k, mesh_info, scal) +
|
||||
der2_scal<AXIS_Y>(i, j, k, mesh_info, scal) +
|
||||
der2_scal<AXIS_Z>(i, j, k, mesh_info, scal);
|
||||
}
|
||||
|
||||
static void
|
||||
laplace_vec(const int& i, const int& j, const int& k,
|
||||
const AcMeshInfo& mesh_info, const MODEL_REAL* vec_x,
|
||||
const MODEL_REAL* vec_y, const MODEL_REAL* vec_z, MODEL_REAL* laplace_x,
|
||||
MODEL_REAL* laplace_y, MODEL_REAL* laplace_z)
|
||||
{
|
||||
*laplace_x = laplace_scal(i, j, k, mesh_info, vec_x);
|
||||
*laplace_y = laplace_scal(i, j, k, mesh_info, vec_y);
|
||||
*laplace_z = laplace_scal(i, j, k, mesh_info, vec_z);
|
||||
}
|
||||
|
||||
static MODEL_REAL
|
||||
div_vec(const int& i, const int& j, const int& k, const AcMeshInfo& mesh_info,
|
||||
const MODEL_REAL* vec_x, const MODEL_REAL* vec_y, const MODEL_REAL* vec_z)
|
||||
{
|
||||
return der_scal<AXIS_X>(i, j, k, mesh_info, vec_x) +
|
||||
der_scal<AXIS_Y>(i, j, k, mesh_info, vec_y) +
|
||||
der_scal<AXIS_Z>(i, j, k, mesh_info, vec_z);
|
||||
}
|
||||
|
||||
static void
|
||||
grad(const int& i, const int& j, const int& k, const AcMeshInfo& mesh_info,
|
||||
const MODEL_REAL* scal, MODEL_REAL* res_x, MODEL_REAL* res_y, MODEL_REAL* res_z)
|
||||
{
|
||||
*res_x = der_scal<AXIS_X>(i, j, k, mesh_info, scal);
|
||||
*res_y = der_scal<AXIS_Y>(i, j, k, mesh_info, scal);
|
||||
*res_z = der_scal<AXIS_Z>(i, j, k, mesh_info, scal);
|
||||
}
|
||||
|
||||
static MODEL_REAL
|
||||
vec_dot_nabla_scal(const int& i, const int& j, const int& k,
|
||||
const AcMeshInfo& mesh_info, const MODEL_REAL* vec_x,
|
||||
const MODEL_REAL* vec_y, const MODEL_REAL* vec_z, const MODEL_REAL* scal)
|
||||
{
|
||||
const int idx = AC_VTXBUF_IDX(i, j, k, mesh_info);
|
||||
MODEL_REAL ddx_scal, ddy_scal, ddz_scal;
|
||||
grad(i, j, k, mesh_info, scal, &ddx_scal, &ddy_scal, &ddz_scal);
|
||||
return vec_x[idx] * ddx_scal + vec_y[idx] * ddy_scal +
|
||||
vec_z[idx] * ddz_scal;
|
||||
}
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Viscosity
|
||||
* =============================================================================
|
||||
*/
|
||||
typedef enum { DERNM_XY, DERNM_YZ, DERNM_XZ } DernmType;
|
||||
|
||||
template <DernmType dernm>
|
||||
static MODEL_REAL
|
||||
dernm_scal(const int& i, const int& j, const int& k,
|
||||
const AcMeshInfo& mesh_info, const MODEL_REAL* scal)
|
||||
{
|
||||
|
||||
MODEL_REAL fac;
|
||||
|
||||
const MODEL_REAL dsx = mesh_info.real_params[AC_dsx];
|
||||
const MODEL_REAL dsy = mesh_info.real_params[AC_dsy];
|
||||
const MODEL_REAL dsz = mesh_info.real_params[AC_dsz];
|
||||
|
||||
MODEL_REAL f_p1_p1, f_m1_p1, f_m1_m1, f_p1_m1;
|
||||
MODEL_REAL f_p2_p2, f_m2_p2, f_m2_m2, f_p2_m2;
|
||||
MODEL_REAL f_p3_p3, f_m3_p3, f_m3_m3, f_p3_m3;
|
||||
|
||||
switch (dernm) {
|
||||
case DERNM_XY:
|
||||
fac = MODEL_REAL(1. / 720.) * (MODEL_REAL(1.) / dsx) * (MODEL_REAL(1.) / dsy);
|
||||
f_p1_p1 = scal[AC_VTXBUF_IDX(i + 1, j + 1, k, mesh_info)];
|
||||
f_m1_p1 = scal[AC_VTXBUF_IDX(i - 1, j + 1, k, mesh_info)];
|
||||
f_m1_m1 = scal[AC_VTXBUF_IDX(i - 1, j - 1, k, mesh_info)];
|
||||
f_p1_m1 = scal[AC_VTXBUF_IDX(i + 1, j - 1, k, mesh_info)];
|
||||
|
||||
f_p2_p2 = scal[AC_VTXBUF_IDX(i + 2, j + 2, k, mesh_info)];
|
||||
f_m2_p2 = scal[AC_VTXBUF_IDX(i - 2, j + 2, k, mesh_info)];
|
||||
f_m2_m2 = scal[AC_VTXBUF_IDX(i - 2, j - 2, k, mesh_info)];
|
||||
f_p2_m2 = scal[AC_VTXBUF_IDX(i + 2, j - 2, k, mesh_info)];
|
||||
|
||||
f_p3_p3 = scal[AC_VTXBUF_IDX(i + 3, j + 3, k, mesh_info)];
|
||||
f_m3_p3 = scal[AC_VTXBUF_IDX(i - 3, j + 3, k, mesh_info)];
|
||||
f_m3_m3 = scal[AC_VTXBUF_IDX(i - 3, j - 3, k, mesh_info)];
|
||||
f_p3_m3 = scal[AC_VTXBUF_IDX(i + 3, j - 3, k, mesh_info)];
|
||||
break;
|
||||
case DERNM_YZ:
|
||||
// NOTE this is a bit different from the old one, second is j+1k-1
|
||||
// instead of j-1,k+1
|
||||
fac = MODEL_REAL(1. / 720.) * (MODEL_REAL(1.) / dsy) * (MODEL_REAL(1.) / dsz);
|
||||
f_p1_p1 = scal[AC_VTXBUF_IDX(i, j + 1, k + 1, mesh_info)];
|
||||
f_m1_p1 = scal[AC_VTXBUF_IDX(i, j - 1, k + 1, mesh_info)];
|
||||
f_m1_m1 = scal[AC_VTXBUF_IDX(i, j - 1, k - 1, mesh_info)];
|
||||
f_p1_m1 = scal[AC_VTXBUF_IDX(i, j + 1, k - 1, mesh_info)];
|
||||
|
||||
f_p2_p2 = scal[AC_VTXBUF_IDX(i, j + 2, k + 2, mesh_info)];
|
||||
f_m2_p2 = scal[AC_VTXBUF_IDX(i, j - 2, k + 2, mesh_info)];
|
||||
f_m2_m2 = scal[AC_VTXBUF_IDX(i, j - 2, k - 2, mesh_info)];
|
||||
f_p2_m2 = scal[AC_VTXBUF_IDX(i, j + 2, k - 2, mesh_info)];
|
||||
|
||||
f_p3_p3 = scal[AC_VTXBUF_IDX(i, j + 3, k + 3, mesh_info)];
|
||||
f_m3_p3 = scal[AC_VTXBUF_IDX(i, j - 3, k + 3, mesh_info)];
|
||||
f_m3_m3 = scal[AC_VTXBUF_IDX(i, j - 3, k - 3, mesh_info)];
|
||||
f_p3_m3 = scal[AC_VTXBUF_IDX(i, j + 3, k - 3, mesh_info)];
|
||||
break;
|
||||
case DERNM_XZ:
|
||||
fac = MODEL_REAL(1. / 720.) * (MODEL_REAL(1.) / dsx) * (MODEL_REAL(1.) / dsz);
|
||||
f_p1_p1 = scal[AC_VTXBUF_IDX(i + 1, j, k + 1, mesh_info)];
|
||||
f_m1_p1 = scal[AC_VTXBUF_IDX(i - 1, j, k + 1, mesh_info)];
|
||||
f_m1_m1 = scal[AC_VTXBUF_IDX(i - 1, j, k - 1, mesh_info)];
|
||||
f_p1_m1 = scal[AC_VTXBUF_IDX(i + 1, j, k - 1, mesh_info)];
|
||||
|
||||
f_p2_p2 = scal[AC_VTXBUF_IDX(i + 2, j, k + 2, mesh_info)];
|
||||
f_m2_p2 = scal[AC_VTXBUF_IDX(i - 2, j, k + 2, mesh_info)];
|
||||
f_m2_m2 = scal[AC_VTXBUF_IDX(i - 2, j, k - 2, mesh_info)];
|
||||
f_p2_m2 = scal[AC_VTXBUF_IDX(i + 2, j, k - 2, mesh_info)];
|
||||
|
||||
f_p3_p3 = scal[AC_VTXBUF_IDX(i + 3, j, k + 3, mesh_info)];
|
||||
f_m3_p3 = scal[AC_VTXBUF_IDX(i - 3, j, k + 3, mesh_info)];
|
||||
f_m3_m3 = scal[AC_VTXBUF_IDX(i - 3, j, k - 3, mesh_info)];
|
||||
f_p3_m3 = scal[AC_VTXBUF_IDX(i + 3, j, k - 3, mesh_info)];
|
||||
break;
|
||||
default:
|
||||
ERROR("Invalid dernm type");
|
||||
}
|
||||
return fac * (MODEL_REAL(270.) * (f_p1_p1 - f_m1_p1 + f_m1_m1 - f_p1_m1) -
|
||||
MODEL_REAL(27.) * (f_p2_p2 - f_m2_p2 + f_m2_m2 - f_p2_m2) +
|
||||
MODEL_REAL(2.) * (f_p3_p3 - f_m3_p3 + f_m3_m3 - f_p3_m3));
|
||||
}
|
||||
|
||||
static void
|
||||
grad_div_vec(const int& i, const int& j, const int& k,
|
||||
const AcMeshInfo& mesh_info, const MODEL_REAL* vec_x,
|
||||
const MODEL_REAL* vec_y, const MODEL_REAL* vec_z, MODEL_REAL* gdvx,
|
||||
MODEL_REAL* gdvy, MODEL_REAL* gdvz)
|
||||
{
|
||||
*gdvx = der2_scal<AXIS_X>(i, j, k, mesh_info, vec_x) +
|
||||
dernm_scal<DERNM_XY>(i, j, k, mesh_info, vec_y) +
|
||||
dernm_scal<DERNM_XZ>(i, j, k, mesh_info, vec_z);
|
||||
|
||||
*gdvy = dernm_scal<DERNM_XY>(i, j, k, mesh_info, vec_x) +
|
||||
der2_scal<AXIS_Y>(i, j, k, mesh_info, vec_y) +
|
||||
dernm_scal<DERNM_YZ>(i, j, k, mesh_info, vec_z);
|
||||
|
||||
*gdvz = dernm_scal<DERNM_XZ>(i, j, k, mesh_info, vec_x) +
|
||||
dernm_scal<DERNM_YZ>(i, j, k, mesh_info, vec_y) +
|
||||
der2_scal<AXIS_Z>(i, j, k, mesh_info, vec_z);
|
||||
}
|
||||
|
||||
static void
|
||||
S_grad_lnrho(const int& i, const int& j, const int& k,
|
||||
const AcMeshInfo& mesh_info, const MODEL_REAL* vec_x,
|
||||
const MODEL_REAL* vec_y, const MODEL_REAL* vec_z, const MODEL_REAL* lnrho,
|
||||
MODEL_REAL* sgrhox, MODEL_REAL* sgrhoy, MODEL_REAL* sgrhoz)
|
||||
{
|
||||
const MODEL_REAL c23 = MODEL_REAL(2. / 3.);
|
||||
const MODEL_REAL c13 = MODEL_REAL(1. / 3.);
|
||||
|
||||
const MODEL_REAL Sxx = c23 * der_scal<AXIS_X>(i, j, k, mesh_info, vec_x) -
|
||||
c13 * (der_scal<AXIS_Y>(i, j, k, mesh_info, vec_y) +
|
||||
der_scal<AXIS_Z>(i, j, k, mesh_info, vec_z));
|
||||
const MODEL_REAL Sxy = MODEL_REAL(.5) *
|
||||
(der_scal<AXIS_Y>(i, j, k, mesh_info, vec_x) +
|
||||
der_scal<AXIS_X>(i, j, k, mesh_info, vec_y));
|
||||
const MODEL_REAL Sxz = MODEL_REAL(.5) *
|
||||
(der_scal<AXIS_Z>(i, j, k, mesh_info, vec_x) +
|
||||
der_scal<AXIS_X>(i, j, k, mesh_info, vec_z));
|
||||
|
||||
const MODEL_REAL Syx = Sxy;
|
||||
const MODEL_REAL Syy = c23 * der_scal<AXIS_Y>(i, j, k, mesh_info, vec_y) -
|
||||
c13 * (der_scal<AXIS_X>(i, j, k, mesh_info, vec_x) +
|
||||
der_scal<AXIS_Z>(i, j, k, mesh_info, vec_z));
|
||||
const MODEL_REAL Syz = MODEL_REAL(.5) *
|
||||
(der_scal<AXIS_Z>(i, j, k, mesh_info, vec_y) +
|
||||
der_scal<AXIS_Y>(i, j, k, mesh_info, vec_z));
|
||||
|
||||
const MODEL_REAL Szx = Sxz;
|
||||
const MODEL_REAL Szy = Syz;
|
||||
const MODEL_REAL Szz = c23 *
|
||||
der_scal<AXIS_Z>(
|
||||
i, j, k, mesh_info,
|
||||
vec_z) // replaced from "c23*der_scal<AXIS_Z>(i,
|
||||
// j, k, mesh_info, vec_x)"! TODO recheck
|
||||
// that ddz_uu_z is the correct one
|
||||
- c13 * (der_scal<AXIS_X>(i, j, k, mesh_info, vec_x) +
|
||||
der_scal<AXIS_Y>(i, j, k, mesh_info, vec_y));
|
||||
|
||||
// Grad lnrho
|
||||
|
||||
MODEL_REAL glnx, glny, glnz;
|
||||
|
||||
grad(i, j, k, mesh_info, lnrho, &glnx, &glny, &glnz);
|
||||
|
||||
*sgrhox = Sxx * glnx + Sxy * glny + Sxz * glnz;
|
||||
*sgrhoy = Syx * glnx + Syy * glny + Syz * glnz;
|
||||
*sgrhoz = Szx * glnx + Szy * glny + Szz * glnz;
|
||||
}
|
||||
|
||||
static void
|
||||
nu_const(const int& i, const int& j, const int& k, const AcMeshInfo& mesh_info,
|
||||
const MODEL_REAL* vec_x, const MODEL_REAL* vec_y, const MODEL_REAL* vec_z,
|
||||
const MODEL_REAL* scal, MODEL_REAL* visc_x, MODEL_REAL* visc_y, MODEL_REAL* visc_z)
|
||||
{
|
||||
MODEL_REAL lx, ly, lz;
|
||||
laplace_vec(i, j, k, mesh_info, vec_x, vec_y, vec_z, &lx, &ly, &lz);
|
||||
// lx = ly = lz = .0f;
|
||||
|
||||
MODEL_REAL gx, gy, gz;
|
||||
grad_div_vec(i, j, k, mesh_info, vec_x, vec_y, vec_z, &gx, &gy, &gz);
|
||||
// gx = gy =gz = .0f;
|
||||
|
||||
MODEL_REAL sgrhox, sgrhoy, sgrhoz;
|
||||
S_grad_lnrho(i, j, k, mesh_info, vec_x, vec_y, vec_z, scal, &sgrhox,
|
||||
&sgrhoy, &sgrhoz);
|
||||
// sgrhox = sgrhoy = sgrhoz = .0f;
|
||||
|
||||
*visc_x = mesh_info.real_params[AC_nu_visc] *
|
||||
(lx + MODEL_REAL(1. / 3.) * gx + MODEL_REAL(2.) * sgrhox)
|
||||
+ mesh_info.real_params[AC_zeta] * gx;
|
||||
*visc_y = mesh_info.real_params[AC_nu_visc] *
|
||||
(ly + MODEL_REAL(1. / 3.) * gy + MODEL_REAL(2.) * sgrhoy)
|
||||
+ mesh_info.real_params[AC_zeta] * gy;
|
||||
*visc_z = mesh_info.real_params[AC_nu_visc] *
|
||||
(lz + MODEL_REAL(1. / 3.) * gz + MODEL_REAL(2.) * sgrhoz)
|
||||
+ mesh_info.real_params[AC_zeta] * gz;
|
||||
}
|
203
src/standalone/model/model_reduce.cc
Normal file
203
src/standalone/model/model_reduce.cc
Normal file
@@ -0,0 +1,203 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "model_reduce.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "core/errchk.h"
|
||||
|
||||
// Function pointer definitions
|
||||
typedef ModelScalar (*ReduceFunc)(const ModelScalar&, const ModelScalar&);
|
||||
typedef ModelScalar (*ReduceInitialScalFunc)(const ModelScalar&);
|
||||
typedef ModelScalar (*ReduceInitialVecFunc)(const ModelScalar&, const ModelScalar&,
|
||||
const ModelScalar&);
|
||||
|
||||
// clang-format off
|
||||
/* Comparison funcs */
|
||||
static inline ModelScalar
|
||||
max(const ModelScalar& a, const ModelScalar& b) { return a > b ? a : b; }
|
||||
|
||||
static inline ModelScalar
|
||||
min(const ModelScalar& a, const ModelScalar& b) { return a < b ? a : b; }
|
||||
|
||||
static inline ModelScalar
|
||||
sum(const ModelScalar& a, const ModelScalar& b) { return a + b; }
|
||||
|
||||
/* Function used to determine the values used during reduction */
|
||||
static inline ModelScalar
|
||||
length(const ModelScalar& a) { return (ModelScalar)(a); }
|
||||
|
||||
static inline ModelScalar
|
||||
length(const ModelScalar& a, const ModelScalar& b, const ModelScalar& c) { return sqrtl(a*a + b*b + c*c); }
|
||||
|
||||
static inline ModelScalar
|
||||
squared(const ModelScalar& a) { return (ModelScalar)(a*a); }
|
||||
|
||||
static inline ModelScalar
|
||||
squared(const ModelScalar& a, const ModelScalar& b, const ModelScalar& c) { return squared(a) + squared(b) + squared(c); }
|
||||
|
||||
static inline ModelScalar
|
||||
exp_squared(const ModelScalar& a) { return expl(a)*expl(a); }
|
||||
|
||||
static inline ModelScalar
|
||||
exp_squared(const ModelScalar& a, const ModelScalar& b, const ModelScalar& c) { return exp_squared(a) + exp_squared(b) + exp_squared(c); }
|
||||
// clang-format on
|
||||
|
||||
ModelScalar
|
||||
model_reduce_scal(const ModelMesh& mesh, const ReductionType& rtype,
|
||||
const VertexBufferHandle& a)
|
||||
{
|
||||
ReduceInitialScalFunc reduce_initial;
|
||||
ReduceFunc reduce;
|
||||
|
||||
bool solve_mean = false;
|
||||
|
||||
switch (rtype) {
|
||||
case RTYPE_MAX:
|
||||
reduce_initial = length;
|
||||
reduce = max;
|
||||
break;
|
||||
case RTYPE_MIN:
|
||||
reduce_initial = length;
|
||||
reduce = min;
|
||||
break;
|
||||
case RTYPE_RMS:
|
||||
reduce_initial = squared;
|
||||
reduce = sum;
|
||||
solve_mean = true;
|
||||
break;
|
||||
case RTYPE_RMS_EXP:
|
||||
reduce_initial = exp_squared;
|
||||
reduce = sum;
|
||||
solve_mean = true;
|
||||
break;
|
||||
default:
|
||||
ERROR("Unrecognized RTYPE");
|
||||
}
|
||||
|
||||
const int initial_idx = AC_VTXBUF_IDX(
|
||||
mesh.info.int_params[AC_nx_min], mesh.info.int_params[AC_ny_min],
|
||||
mesh.info.int_params[AC_nz_min], mesh.info);
|
||||
|
||||
ModelScalar res;
|
||||
if (rtype == RTYPE_MAX || rtype == RTYPE_MIN)
|
||||
res = reduce_initial(mesh.vertex_buffer[a][initial_idx]);
|
||||
else
|
||||
res = .0f;
|
||||
|
||||
for (int k = mesh.info.int_params[AC_nz_min];
|
||||
k < mesh.info.int_params[AC_nz_max]; ++k) {
|
||||
for (int j = mesh.info.int_params[AC_ny_min];
|
||||
j < mesh.info.int_params[AC_ny_max]; ++j) {
|
||||
for (int i = mesh.info.int_params[AC_nx_min];
|
||||
i < mesh.info.int_params[AC_nx_max]; ++i) {
|
||||
const int idx = AC_VTXBUF_IDX(i, j, k, mesh.info);
|
||||
const ModelScalar curr_val = reduce_initial(
|
||||
mesh.vertex_buffer[a][idx]);
|
||||
res = reduce(res, curr_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (solve_mean) {
|
||||
const ModelScalar inv_n = 1.0l / mesh.info.int_params[AC_nxyz];
|
||||
return sqrtl(inv_n * res);
|
||||
}
|
||||
else {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
ModelScalar
|
||||
model_reduce_vec(const ModelMesh& mesh, const ReductionType& rtype,
|
||||
const VertexBufferHandle& a, const VertexBufferHandle& b,
|
||||
const VertexBufferHandle& c)
|
||||
{
|
||||
// ModelScalar (*reduce_initial)(ModelScalar, ModelScalar, ModelScalar);
|
||||
ReduceInitialVecFunc reduce_initial;
|
||||
ReduceFunc reduce;
|
||||
|
||||
bool solve_mean = false;
|
||||
|
||||
switch (rtype) {
|
||||
case RTYPE_MAX:
|
||||
reduce_initial = length;
|
||||
reduce = max;
|
||||
break;
|
||||
case RTYPE_MIN:
|
||||
reduce_initial = length;
|
||||
reduce = min;
|
||||
break;
|
||||
case RTYPE_RMS:
|
||||
reduce_initial = squared;
|
||||
reduce = sum;
|
||||
solve_mean = true;
|
||||
break;
|
||||
case RTYPE_RMS_EXP:
|
||||
reduce_initial = exp_squared;
|
||||
reduce = sum;
|
||||
solve_mean = true;
|
||||
break;
|
||||
default:
|
||||
ERROR("Unrecognized RTYPE");
|
||||
}
|
||||
|
||||
const int initial_idx = AC_VTXBUF_IDX(
|
||||
mesh.info.int_params[AC_nx_min], mesh.info.int_params[AC_ny_min],
|
||||
mesh.info.int_params[AC_nz_min], mesh.info);
|
||||
|
||||
ModelScalar res;
|
||||
if (rtype == RTYPE_MAX || rtype == RTYPE_MIN)
|
||||
res = reduce_initial(mesh.vertex_buffer[a][initial_idx],
|
||||
mesh.vertex_buffer[b][initial_idx],
|
||||
mesh.vertex_buffer[c][initial_idx]);
|
||||
else
|
||||
res = 0;
|
||||
|
||||
for (int k = mesh.info.int_params[AC_nz_min];
|
||||
k < mesh.info.int_params[AC_nz_max]; k++) {
|
||||
for (int j = mesh.info.int_params[AC_ny_min];
|
||||
j < mesh.info.int_params[AC_ny_max]; j++) {
|
||||
for (int i = mesh.info.int_params[AC_nx_min];
|
||||
i < mesh.info.int_params[AC_nx_max]; i++) {
|
||||
const int idx = AC_VTXBUF_IDX(i, j, k, mesh.info);
|
||||
const ModelScalar curr_val = reduce_initial(
|
||||
mesh.vertex_buffer[a][idx], mesh.vertex_buffer[b][idx],
|
||||
mesh.vertex_buffer[c][idx]);
|
||||
res = reduce(res, curr_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (solve_mean) {
|
||||
const ModelScalar inv_n = 1.0l / mesh.info.int_params[AC_nxyz];
|
||||
return sqrtl(inv_n * res);
|
||||
}
|
||||
else {
|
||||
return res;
|
||||
}
|
||||
}
|
37
src/standalone/model/model_reduce.h
Normal file
37
src/standalone/model/model_reduce.h
Normal file
@@ -0,0 +1,37 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
#include "modelmesh.h"
|
||||
|
||||
ModelScalar model_reduce_scal(const ModelMesh& mesh, const ReductionType& rtype,
|
||||
const VertexBufferHandle& a);
|
||||
|
||||
ModelScalar model_reduce_vec(const ModelMesh& mesh, const ReductionType& rtype,
|
||||
const VertexBufferHandle& a,
|
||||
const VertexBufferHandle& b,
|
||||
const VertexBufferHandle& c);
|
1044
src/standalone/model/model_rk3.cc
Normal file
1044
src/standalone/model/model_rk3.cc
Normal file
File diff suppressed because it is too large
Load Diff
33
src/standalone/model/model_rk3.h
Normal file
33
src/standalone/model/model_rk3.h
Normal file
@@ -0,0 +1,33 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
#include "modelmesh.h"
|
||||
|
||||
void model_rk3(const ModelScalar dt, ModelMesh* mesh);
|
||||
|
||||
void model_rk3_step(const int step_number, const ModelScalar dt, ModelMesh* mesh);
|
36
src/standalone/model/modelmesh.h
Normal file
36
src/standalone/model/modelmesh.h
Normal file
@@ -0,0 +1,36 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
#include "astaroth.h"
|
||||
|
||||
|
||||
typedef long double ModelScalar;
|
||||
|
||||
typedef struct {
|
||||
ModelScalar* vertex_buffer[NUM_VTXBUF_HANDLES];
|
||||
AcMeshInfo info;
|
||||
} ModelMesh;
|
447
src/standalone/renderer.cc
Normal file
447
src/standalone/renderer.cc
Normal file
@@ -0,0 +1,447 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "run.h"
|
||||
|
||||
#include <SDL.h> // Note: using local version in src/3rdparty dir
|
||||
#include <math.h> // ceil
|
||||
#include <string.h> // memcpy
|
||||
|
||||
#include "config_loader.h"
|
||||
#include "core/errchk.h"
|
||||
#include "core/math_utils.h"
|
||||
#include "model/host_memory.h"
|
||||
#include "model/host_timestep.h"
|
||||
#include "model/model_reduce.h"
|
||||
#include "model/model_rk3.h"
|
||||
#include "timer_hires.h"
|
||||
|
||||
// Window
|
||||
SDL_Renderer* renderer = NULL;
|
||||
static SDL_Window* window = NULL;
|
||||
static int window_width = 800;
|
||||
static int window_height = 600;
|
||||
static const int window_bpp = 32; // Bits per pixel
|
||||
|
||||
// Surfaces
|
||||
SDL_Surface* surfaces[NUM_VTXBUF_HANDLES];
|
||||
static int datasurface_width = -1;
|
||||
static int datasurface_height = -1;
|
||||
static int k_slice = 0;
|
||||
static int k_slice_max = 0;
|
||||
|
||||
// Colors
|
||||
static SDL_Color color_bg = (SDL_Color){30, 30, 35, 255};
|
||||
static const int num_tiles = NUM_VTXBUF_HANDLES + 1;
|
||||
static const int tiles_per_row = 3;
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Camera
|
||||
* =============================================================================
|
||||
*/
|
||||
/*
|
||||
typedef struct {
|
||||
float x, y;
|
||||
} float2;
|
||||
*/
|
||||
typedef struct {
|
||||
float x, y, w, h;
|
||||
} vec4;
|
||||
|
||||
typedef struct {
|
||||
float2 pos;
|
||||
float scale;
|
||||
} Camera;
|
||||
|
||||
static Camera camera = (Camera){(float2){.0f, .0f}, 1.f};
|
||||
|
||||
static inline vec4
|
||||
project_ortho(const float2& pos, const float2& bbox, const float2& wdims)
|
||||
{
|
||||
const vec4 rect = (vec4){
|
||||
camera.scale * (pos.x - camera.pos.x) + 0.5f * wdims.x,
|
||||
camera.scale * (pos.y - camera.pos.y) + 0.5f * wdims.y,
|
||||
camera.scale * bbox.x, camera.scale * bbox.y};
|
||||
|
||||
return rect;
|
||||
}
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Renderer
|
||||
* =============================================================================
|
||||
*/
|
||||
|
||||
static int
|
||||
renderer_init(const int& mx, const int& my)
|
||||
{
|
||||
// Init video
|
||||
SDL_InitSubSystem(SDL_INIT_VIDEO | SDL_INIT_EVENTS);
|
||||
|
||||
// Setup window
|
||||
window = SDL_CreateWindow("Astaroth", SDL_WINDOWPOS_UNDEFINED,
|
||||
SDL_WINDOWPOS_UNDEFINED, window_width,
|
||||
window_height, SDL_WINDOW_SHOWN);
|
||||
|
||||
// Setup SDL renderer
|
||||
renderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED);
|
||||
//SDL_SetWindowFullscreen(window, SDL_WINDOW_FULLSCREEN_DESKTOP);
|
||||
SDL_GetWindowSize(window, &window_width, &window_height);
|
||||
|
||||
SDL_SetHint(SDL_HINT_RENDER_SCALE_QUALITY, "1"); // Linear filtering
|
||||
|
||||
datasurface_width = mx;
|
||||
datasurface_height = my;
|
||||
// vec drawing uses the surface of the first component, no memory issues here
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
surfaces[i] = SDL_CreateRGBSurfaceWithFormat(
|
||||
0, datasurface_width, datasurface_height, window_bpp,
|
||||
SDL_PIXELFORMAT_RGBA8888);
|
||||
|
||||
camera.pos = (float2){.5f * tiles_per_row * datasurface_width - .5f * datasurface_width,
|
||||
-.5f * (num_tiles / tiles_per_row) * datasurface_height + .5f * datasurface_height};
|
||||
camera.scale = min(window_width / float(datasurface_width * tiles_per_row),
|
||||
window_height / float(datasurface_height * (num_tiles/tiles_per_row)));
|
||||
|
||||
SDL_RendererInfo renderer_info;
|
||||
SDL_GetRendererInfo(renderer, &renderer_info);
|
||||
printf("SDL renderer max texture dims: (%d, %d)\n", renderer_info.max_texture_width, renderer_info.max_texture_height);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
set_pixel(const int& i, const int& j, const uint32_t& color,
|
||||
SDL_Surface* surface)
|
||||
{
|
||||
uint32_t* pixels = (uint32_t*)surface->pixels;
|
||||
pixels[i + j * surface->w] = color;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
draw_vertex_buffer(const AcMesh& mesh, const VertexBufferHandle& vertex_buffer,
|
||||
const int& tile)
|
||||
{
|
||||
const float xoffset = (tile % tiles_per_row) * datasurface_width;
|
||||
const float yoffset = - (tile / tiles_per_row) * datasurface_height;
|
||||
|
||||
/*
|
||||
const float max = float(model_reduce_scal(mesh, RTYPE_MAX, vertex_buffer));
|
||||
const float min = float(model_reduce_scal(mesh, RTYPE_MIN, vertex_buffer));
|
||||
*/
|
||||
const float max = 1.f;//float(acReduceScal(RTYPE_MAX, vertex_buffer));
|
||||
const float min = 0.f;//float(acReduceScal(RTYPE_MIN, vertex_buffer));
|
||||
const float range = fabsf(max - min);
|
||||
const float mid = max - .5f * range;
|
||||
|
||||
const int k = k_slice; //mesh.info.int_params[AC_mz] / 2;
|
||||
|
||||
for (int j = 0; j < mesh.info.int_params[AC_my]; ++j) {
|
||||
for (int i = 0; i < mesh.info.int_params[AC_mx]; ++i) {
|
||||
ERRCHK(i < datasurface_width && j < datasurface_height);
|
||||
|
||||
const int idx = AC_VTXBUF_IDX(i, j, k, mesh.info);
|
||||
const uint8_t shade = (uint8_t)(
|
||||
255.f *
|
||||
(fabsf(float(mesh.vertex_buffer[vertex_buffer][idx]) - mid)) /
|
||||
range);
|
||||
uint8_t color[4] = {0, 0, 0, 255};
|
||||
color[tile % 3] = shade;
|
||||
const uint32_t mapped_color = SDL_MapRGBA(
|
||||
surfaces[vertex_buffer]->format, color[0], color[1], color[2],
|
||||
color[3]);
|
||||
set_pixel(i, j, mapped_color, surfaces[vertex_buffer]);
|
||||
}
|
||||
}
|
||||
|
||||
const float2 pos = (float2){xoffset, yoffset};
|
||||
const float2 bbox = (float2){.5f * datasurface_width,
|
||||
.5f * datasurface_height};
|
||||
const float2 wsize = (float2){float(window_width), float(window_height)};
|
||||
const vec4 rectf = project_ortho(pos, bbox, wsize);
|
||||
SDL_Rect rect = (SDL_Rect){
|
||||
int(rectf.x - rectf.w), int(wsize.y - rectf.y - rectf.h),
|
||||
int(ceil(2.f * rectf.w)), int(ceil(2.f * rectf.h))};
|
||||
|
||||
SDL_Texture* tex = SDL_CreateTextureFromSurface(renderer,
|
||||
surfaces[vertex_buffer]);
|
||||
SDL_RenderCopy(renderer, tex, NULL, &rect);
|
||||
SDL_DestroyTexture(tex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
draw_vertex_buffer_vec(const AcMesh& mesh,
|
||||
const VertexBufferHandle& vertex_buffer_a,
|
||||
const VertexBufferHandle& vertex_buffer_b,
|
||||
const VertexBufferHandle& vertex_buffer_c,
|
||||
const int& tile)
|
||||
{
|
||||
const float xoffset = (tile % tiles_per_row) * datasurface_width;
|
||||
const float yoffset = - (tile / tiles_per_row) * datasurface_height;
|
||||
|
||||
/*
|
||||
const float maxx = float(
|
||||
max(model_reduce_scal(mesh, RTYPE_MAX, vertex_buffer_a),
|
||||
max(model_reduce_scal(mesh, RTYPE_MAX, vertex_buffer_b),
|
||||
model_reduce_scal(mesh, RTYPE_MAX, vertex_buffer_c))));
|
||||
const float minn = float(
|
||||
min(model_reduce_scal(mesh, RTYPE_MIN, vertex_buffer_a),
|
||||
min(model_reduce_scal(mesh, RTYPE_MIN, vertex_buffer_b),
|
||||
model_reduce_scal(mesh, RTYPE_MIN, vertex_buffer_c))));
|
||||
*/
|
||||
const float maxx = float(
|
||||
max(acReduceScal(RTYPE_MAX, vertex_buffer_a),
|
||||
max(acReduceScal(RTYPE_MAX, vertex_buffer_b),
|
||||
acReduceScal(RTYPE_MAX, vertex_buffer_c))));
|
||||
const float minn = float(
|
||||
min(acReduceScal(RTYPE_MIN, vertex_buffer_a),
|
||||
min(acReduceScal(RTYPE_MIN, vertex_buffer_b),
|
||||
acReduceScal(RTYPE_MIN, vertex_buffer_c))));
|
||||
const float range = fabsf(maxx - minn);
|
||||
const float mid = maxx - .5f * range;
|
||||
|
||||
const int k = k_slice; //mesh.info.int_params[AC_mz] / 2;
|
||||
for (int j = 0; j < mesh.info.int_params[AC_my]; ++j) {
|
||||
for (int i = 0; i < mesh.info.int_params[AC_mx]; ++i) {
|
||||
ERRCHK(i < datasurface_width && j < datasurface_height);
|
||||
|
||||
const int idx = AC_VTXBUF_IDX(i, j, k, mesh.info);
|
||||
const uint8_t r = (uint8_t)(
|
||||
255.f *
|
||||
(fabsf(float(mesh.vertex_buffer[vertex_buffer_a][idx]) - mid)) /
|
||||
range);
|
||||
const uint8_t g = (uint8_t)(
|
||||
255.f *
|
||||
(fabsf(float(mesh.vertex_buffer[vertex_buffer_b][idx]) - mid)) /
|
||||
range);
|
||||
const uint8_t b = (uint8_t)(
|
||||
255.f *
|
||||
(fabsf(float(mesh.vertex_buffer[vertex_buffer_c][idx]) - mid)) /
|
||||
range);
|
||||
const uint32_t mapped_color = SDL_MapRGBA(
|
||||
surfaces[vertex_buffer_a]->format, r, g, b, 255);
|
||||
set_pixel(i, j, mapped_color, surfaces[vertex_buffer_a]);
|
||||
}
|
||||
}
|
||||
|
||||
const float2 pos = (float2){xoffset, yoffset};
|
||||
const float2 bbox = (float2){.5f * datasurface_width,
|
||||
.5f * datasurface_height};
|
||||
const float2 wsize = (float2){float(window_width), float(window_height)};
|
||||
const vec4 rectf = project_ortho(pos, bbox, wsize);
|
||||
SDL_Rect rect = (SDL_Rect){
|
||||
int(rectf.x - rectf.w), int(wsize.y - rectf.y - rectf.h),
|
||||
int(ceil(2.f * rectf.w)), int(ceil(2.f * rectf.h))};
|
||||
|
||||
SDL_Texture* tex = SDL_CreateTextureFromSurface(renderer,
|
||||
surfaces[vertex_buffer_a]);
|
||||
SDL_RenderCopy(renderer, tex, NULL, &rect);
|
||||
SDL_DestroyTexture(tex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
renderer_draw(const AcMesh& mesh)
|
||||
{
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
draw_vertex_buffer(mesh, VertexBufferHandle(i), i);
|
||||
draw_vertex_buffer_vec(mesh, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ,
|
||||
NUM_VTXBUF_HANDLES);
|
||||
|
||||
// Drawing done, present
|
||||
SDL_RenderPresent(renderer);
|
||||
SDL_SetRenderDrawColor(renderer, color_bg.r, color_bg.g, color_bg.b,
|
||||
color_bg.a);
|
||||
SDL_RenderClear(renderer);
|
||||
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
const VertexBufferHandle vertex_buffer = VertexBufferHandle(i);
|
||||
/*
|
||||
printf("\t%s umax %e, min %e\n", vtxbuf_names[vertex_buffer],
|
||||
(double)model_reduce_scal(mesh, RTYPE_MAX, vertex_buffer),
|
||||
(double)model_reduce_scal(mesh, RTYPE_MIN, vertex_buffer));
|
||||
*/
|
||||
printf("\t%s umax %e, min %e\n", vtxbuf_names[vertex_buffer],
|
||||
(double)acReduceScal(RTYPE_MAX, vertex_buffer),
|
||||
(double)acReduceScal(RTYPE_MIN, vertex_buffer));
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
renderer_quit(void)
|
||||
{
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i)
|
||||
SDL_FreeSurface(surfaces[i]);
|
||||
|
||||
SDL_DestroyRenderer(renderer);
|
||||
SDL_DestroyWindow(window);
|
||||
|
||||
renderer = NULL;
|
||||
window = NULL;
|
||||
|
||||
SDL_Quit();
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int init_type = INIT_TYPE_GAUSSIAN_RADIAL_EXPL;
|
||||
|
||||
static bool
|
||||
running(AcMesh* mesh)
|
||||
{
|
||||
SDL_Event e;
|
||||
while (SDL_PollEvent(&e)) {
|
||||
if (e.type == SDL_QUIT) {
|
||||
return false;
|
||||
}
|
||||
else if (e.type == SDL_KEYDOWN) {
|
||||
if (e.key.keysym.sym == SDLK_ESCAPE)
|
||||
return false;
|
||||
if (e.key.keysym.sym == SDLK_SPACE) {
|
||||
init_type = (init_type + 1) % NUM_INIT_TYPES;
|
||||
acmesh_init_to(InitType(init_type), mesh);
|
||||
acLoad(*mesh);
|
||||
}
|
||||
if (e.key.keysym.sym == SDLK_i) {
|
||||
k_slice = (k_slice + 1) % k_slice_max;
|
||||
printf("k_slice %d\n", k_slice);
|
||||
}
|
||||
if (e.key.keysym.sym == SDLK_k) {
|
||||
k_slice = (k_slice - 1 + k_slice_max) % k_slice_max;
|
||||
printf("k_slice %d\n", k_slice);
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void
|
||||
check_input(const float& dt)
|
||||
{
|
||||
/* Camera movement */
|
||||
const float camera_translate_rate = 1000.f / camera.scale;
|
||||
const float camera_scale_rate = 1.0001f;
|
||||
const uint8_t* keystates = (uint8_t*)SDL_GetKeyboardState(NULL);
|
||||
if (keystates[SDL_SCANCODE_UP])
|
||||
camera.pos.y += camera_translate_rate * dt;
|
||||
if (keystates[SDL_SCANCODE_DOWN])
|
||||
camera.pos.y -= camera_translate_rate * dt;
|
||||
if (keystates[SDL_SCANCODE_LEFT])
|
||||
camera.pos.x -= camera_translate_rate * dt;
|
||||
if (keystates[SDL_SCANCODE_RIGHT])
|
||||
camera.pos.x += camera_translate_rate * dt;
|
||||
if (keystates[SDL_SCANCODE_PAGEUP])
|
||||
camera.scale += camera.scale * camera_scale_rate * dt;
|
||||
if (keystates[SDL_SCANCODE_PAGEDOWN])
|
||||
camera.scale -= camera.scale * camera_scale_rate * dt;
|
||||
if (keystates[SDL_SCANCODE_COMMA])
|
||||
set_timescale(AcReal(.1));
|
||||
if (keystates[SDL_SCANCODE_PERIOD])
|
||||
set_timescale(AcReal(1.));
|
||||
}
|
||||
|
||||
int
|
||||
run_renderer(void)
|
||||
{
|
||||
/* Parse configs */
|
||||
AcMeshInfo mesh_info;
|
||||
load_config(&mesh_info);
|
||||
renderer_init(mesh_info.int_params[AC_mx], mesh_info.int_params[AC_my]);
|
||||
|
||||
AcMesh* mesh = acmesh_create(mesh_info);
|
||||
acmesh_init_to(InitType(init_type), mesh);
|
||||
|
||||
acInit(mesh_info);
|
||||
acLoad(*mesh);
|
||||
|
||||
Timer frame_timer;
|
||||
timer_reset(&frame_timer);
|
||||
|
||||
Timer wallclock;
|
||||
timer_reset(&wallclock);
|
||||
|
||||
Timer io_timer;
|
||||
timer_reset(&io_timer);
|
||||
|
||||
const float desired_frame_time = 1.f / 60.f;
|
||||
int steps = 0;
|
||||
k_slice = mesh->info.int_params[AC_mz] / 2;
|
||||
k_slice_max = mesh->info.int_params[AC_mz];
|
||||
while (running(mesh)) {
|
||||
|
||||
/* Input */
|
||||
check_input(timer_diff_nsec(io_timer) / 1e9f);
|
||||
timer_reset(&io_timer);
|
||||
|
||||
/* Step the simulation */
|
||||
#if 1
|
||||
const AcReal umax = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY,
|
||||
VTXBUF_UUZ);
|
||||
const AcReal dt = host_timestep(umax, mesh_info);
|
||||
acIntegrate(dt);
|
||||
#else
|
||||
ModelMesh* model_mesh = modelmesh_create(mesh->info);
|
||||
const AcReal umax = AcReal(model_reduce_vec(*model_mesh, RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ));
|
||||
const AcReal dt = host_timestep(umax, mesh_info);
|
||||
acmesh_to_modelmesh(*mesh, model_mesh);
|
||||
model_rk3(dt, model_mesh);
|
||||
modelmesh_to_acmesh(*model_mesh, mesh);
|
||||
modelmesh_destroy(model_mesh);
|
||||
acLoad(*mesh); // Just a quick hack s.t. we do not have to add an
|
||||
// additional if to the render part
|
||||
#endif
|
||||
|
||||
++steps;
|
||||
|
||||
/* Render */
|
||||
const float timer_diff_sec = timer_diff_nsec(frame_timer) / 1e9f;
|
||||
if (timer_diff_sec >= desired_frame_time) {
|
||||
//acStore(mesh);
|
||||
const int num_vertices = mesh->info.int_params[AC_mxy];
|
||||
const int3 dst = (int3){0, 0, k_slice};
|
||||
acStoreWithOffset(dst, num_vertices, mesh);
|
||||
acSynchronize();
|
||||
renderer_draw(*mesh); // Bottleneck is here
|
||||
printf("Step #%d, dt: %f\n", steps, double(dt));
|
||||
timer_reset(&frame_timer);
|
||||
}
|
||||
}
|
||||
printf("Wallclock time %f s\n", double(timer_diff_nsec(wallclock) / 1e9f));
|
||||
|
||||
acStore(mesh);
|
||||
acQuit();
|
||||
acmesh_destroy(mesh);
|
||||
|
||||
renderer_quit();
|
||||
|
||||
return 0;
|
||||
}
|
35
src/standalone/run.h
Normal file
35
src/standalone/run.h
Normal file
@@ -0,0 +1,35 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
int run_autotest(void);
|
||||
|
||||
int run_simulation(void);
|
||||
|
||||
int run_benchmark(void);
|
||||
|
||||
int run_renderer(void);
|
339
src/standalone/simulation.cc
Normal file
339
src/standalone/simulation.cc
Normal file
@@ -0,0 +1,339 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* \brief Brief info.
|
||||
*
|
||||
* Detailed info.
|
||||
*
|
||||
*/
|
||||
#include "run.h"
|
||||
|
||||
#include "config_loader.h"
|
||||
#include "core/errchk.h"
|
||||
#include "core/math_utils.h"
|
||||
#include "model/host_memory.h"
|
||||
#include "model/host_timestep.h"
|
||||
#include "model/model_reduce.h"
|
||||
#include "model/model_rk3.h"
|
||||
#include "timer_hires.h"
|
||||
|
||||
#include <string.h>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
/*
|
||||
// DEPRECATED: TODO remove
|
||||
static inline void
|
||||
print_diagnostics(const AcMesh& mesh, const int& step, const AcReal& dt)
|
||||
{
|
||||
const int max_name_width = 16;
|
||||
printf("Step %d, dt %e s\n", step, double(dt));
|
||||
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, "uu total",
|
||||
double(model_reduce_vec(mesh, RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ)),
|
||||
double(model_reduce_vec(mesh, RTYPE_MIN, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ)),
|
||||
double(model_reduce_vec(mesh, RTYPE_RMS, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ)));
|
||||
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, vtxbuf_names[i],
|
||||
double(model_reduce_scal(mesh, RTYPE_MAX, VertexBufferHandle(i))),
|
||||
double(model_reduce_scal(mesh, RTYPE_MIN, VertexBufferHandle(i))),
|
||||
double(model_reduce_scal(mesh, RTYPE_RMS, VertexBufferHandle(i))));
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
//Write all setting info into a separate ascii file. This is done to guarantee
|
||||
//that we have the data specifi information in the thing, even though in
|
||||
//principle these things are in the astaroth.conf.
|
||||
static inline
|
||||
void write_mesh_info(const AcMeshInfo* config)
|
||||
{
|
||||
|
||||
FILE* infotxt;
|
||||
|
||||
infotxt = fopen("purge.sh","w");
|
||||
fprintf(infotxt, "#!/bin/bash\n");
|
||||
fprintf(infotxt, "rm *.list *.mesh *.ts purge.sh\n");
|
||||
fclose(infotxt);
|
||||
|
||||
infotxt = fopen("mesh_info.list","w");
|
||||
|
||||
//Total grid dimensions
|
||||
fprintf(infotxt, "int AC_mx %i \n", config->int_params[AC_mx]);
|
||||
fprintf(infotxt, "int AC_my %i \n", config->int_params[AC_my]);
|
||||
fprintf(infotxt, "int AC_mz %i \n", config->int_params[AC_mz]);
|
||||
|
||||
// Bounds for the computational domain, i.e. nx_min <= i < nx_max
|
||||
fprintf(infotxt, "int AC_nx_min %i \n", config->int_params[AC_nx_min]);
|
||||
fprintf(infotxt, "int AC_nx_max %i \n", config->int_params[AC_nx_max]);
|
||||
fprintf(infotxt, "int AC_ny_min %i \n", config->int_params[AC_ny_min]);
|
||||
fprintf(infotxt, "int AC_ny_max %i \n", config->int_params[AC_ny_max]);
|
||||
fprintf(infotxt, "int AC_nz_min %i \n", config->int_params[AC_nz_min]);
|
||||
fprintf(infotxt, "int AC_nz_max %i \n", config->int_params[AC_nz_max]);
|
||||
|
||||
// Spacing
|
||||
fprintf(infotxt, "real AC_inv_dsx %e \n", (double)config->real_params[AC_inv_dsx]);
|
||||
fprintf(infotxt, "real AC_inv_dsy %e \n", (double)config->real_params[AC_inv_dsy]);
|
||||
fprintf(infotxt, "real AC_inv_dsz %e \n", (double)config->real_params[AC_inv_dsz]);
|
||||
fprintf(infotxt, "real AC_dsmin %e \n", (double)config->real_params[AC_dsmin ]);
|
||||
|
||||
/* Additional helper params */
|
||||
// Int helpers
|
||||
fprintf(infotxt, "int AC_mxy %i \n", config->int_params[AC_mxy ]);
|
||||
fprintf(infotxt, "int AC_nxy %i \n", config->int_params[AC_nxy ]);
|
||||
fprintf(infotxt, "int AC_nxyz %i \n", config->int_params[AC_nxyz]);
|
||||
|
||||
// Real helpers
|
||||
fprintf(infotxt, "real AC_cs2_sound %e \n", (double)config->real_params[AC_cs2_sound]);
|
||||
fprintf(infotxt, "real AC_cv_sound %e \n", (double)config->real_params[AC_cv_sound ]);
|
||||
|
||||
fclose(infotxt);
|
||||
}
|
||||
|
||||
|
||||
//This funtion writes a run state into a set of C binaries. For the sake of
|
||||
//accuracy, all floating point numbers are to be saved in long double precision
|
||||
//regardless of the choise of accuracy during runtime.
|
||||
static inline void
|
||||
save_mesh(const AcMesh &save_mesh, const int step,
|
||||
const AcReal t_step)
|
||||
{
|
||||
FILE* save_ptr;
|
||||
|
||||
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
|
||||
const size_t n = AC_VTXBUF_SIZE(save_mesh.info);
|
||||
|
||||
const char* buffername = vtxbuf_names[w];
|
||||
char cstep[10];
|
||||
char bin_filename[80] = "\0";
|
||||
|
||||
//sprintf(bin_filename, "");
|
||||
|
||||
sprintf(cstep, "%d", step);
|
||||
|
||||
strcat(bin_filename, buffername);
|
||||
strcat(bin_filename, "_");
|
||||
strcat(bin_filename, cstep);
|
||||
strcat(bin_filename, ".mesh");
|
||||
|
||||
printf("Savefile %s \n", bin_filename);
|
||||
|
||||
save_ptr = fopen(bin_filename,"wb");
|
||||
|
||||
//Start file with time stamp
|
||||
long double write_long_buf = (long double) t_step;
|
||||
fwrite(&write_long_buf, sizeof(long double), 1, save_ptr);
|
||||
//Grid data
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
const AcReal point_val = save_mesh.vertex_buffer[VertexBufferHandle(w)][i];
|
||||
long double write_long_buf = (long double) point_val;
|
||||
fwrite(&write_long_buf, sizeof(long double), 1, save_ptr);
|
||||
}
|
||||
fclose(save_ptr);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
// This function prints out the diagnostic values to std.out and also saves and
|
||||
// appends an ascii file to contain all the result.
|
||||
static inline void
|
||||
print_diagnostics(const int step, const AcReal dt, const AcReal t_step, FILE *diag_file)
|
||||
{
|
||||
|
||||
AcReal buf_rms, buf_max, buf_min;
|
||||
const int max_name_width = 16;
|
||||
|
||||
// Calculate rms, min and max from the velocity vector field
|
||||
buf_max = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
buf_min = acReduceVec(RTYPE_MIN, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
buf_rms = acReduceVec(RTYPE_RMS, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
|
||||
// MV: The ordering in the earlier version was wrong in terms of variable
|
||||
// MV: name and its diagnostics.
|
||||
printf("Step %d, t_step %.3e, dt %e s\n", step, double(t_step), double(dt));
|
||||
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, "uu total",
|
||||
double(buf_min), double(buf_rms), double(buf_max));
|
||||
fprintf(diag_file, "%d %e %e %e %e %e ", step, double(t_step), double(dt),
|
||||
double(buf_min), double(buf_rms), double(buf_max));
|
||||
|
||||
|
||||
// Calculate rms, min and max from the variables as scalars
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
buf_max = acReduceScal(RTYPE_MAX, VertexBufferHandle(i));
|
||||
buf_min = acReduceScal(RTYPE_MIN, VertexBufferHandle(i));
|
||||
buf_rms = acReduceScal(RTYPE_RMS, VertexBufferHandle(i));
|
||||
|
||||
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, vtxbuf_names[i],
|
||||
double(buf_min), double(buf_rms), double(buf_max));
|
||||
fprintf(diag_file, "%e %e %e ", double(buf_min), double(buf_rms), double(buf_max));
|
||||
}
|
||||
|
||||
fprintf(diag_file, "\n");
|
||||
}
|
||||
|
||||
/*
|
||||
MV NOTE: At the moment I have no clear idea how to calculate magnetic
|
||||
diagnostic variables from grid. Vector potential measures have a limited
|
||||
value. TODO: Smart way to get brms, bmin and bmax.
|
||||
*/
|
||||
|
||||
int
|
||||
run_simulation(void)
|
||||
{
|
||||
/* Parse configs */
|
||||
AcMeshInfo mesh_info;
|
||||
load_config(&mesh_info);
|
||||
|
||||
AcMesh* mesh = acmesh_create(mesh_info);
|
||||
acmesh_init_to(INIT_TYPE_GAUSSIAN_RADIAL_EXPL, mesh);
|
||||
|
||||
acInit(mesh_info);
|
||||
acLoad(*mesh);
|
||||
|
||||
|
||||
FILE *diag_file;
|
||||
diag_file = fopen("timeseries.ts", "a");
|
||||
// TODO Get time from earlier state.
|
||||
AcReal t_step = 0.0;
|
||||
|
||||
// Generate the title row.
|
||||
fprintf(diag_file, "step t_step dt uu_total_min uu_total_rms uu_total_max ");
|
||||
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
||||
fprintf(diag_file, "%s_min %s_rms %s_max ", vtxbuf_names[i], vtxbuf_names[i], vtxbuf_names[i]);
|
||||
}
|
||||
|
||||
fprintf(diag_file, "\n");
|
||||
|
||||
write_mesh_info(&mesh_info);
|
||||
print_diagnostics(0, AcReal(.0), t_step, diag_file);
|
||||
|
||||
acSynchronize();
|
||||
acStore(mesh);
|
||||
save_mesh(*mesh, 0, t_step);
|
||||
|
||||
const int max_steps = mesh_info.int_params[AC_max_steps];
|
||||
const int save_steps = mesh_info.int_params[AC_save_steps];
|
||||
const int bin_save_steps = mesh_info.int_params[AC_bin_steps]; //TODO Get from mesh_info
|
||||
|
||||
AcReal bin_save_t = mesh_info.real_params[AC_bin_save_t];
|
||||
AcReal bin_crit_t = bin_save_t;
|
||||
|
||||
/* Step the simulation */
|
||||
for (int i = 1; i < max_steps; ++i) {
|
||||
const AcReal umax = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY,
|
||||
VTXBUF_UUZ);
|
||||
const AcReal dt = host_timestep(umax, mesh_info);
|
||||
acIntegrate(dt);
|
||||
|
||||
t_step += dt;
|
||||
|
||||
/* Save the simulation state and print diagnostics */
|
||||
if ((i % save_steps) == 0) {
|
||||
|
||||
/*
|
||||
print_diagnostics() writes out both std.out printout from the
|
||||
results and saves the diagnostics into a table for ascii file
|
||||
timeseries.ts.
|
||||
*/
|
||||
|
||||
print_diagnostics(i, dt, t_step, diag_file);
|
||||
|
||||
/*
|
||||
We would also might want an XY-average calculating funtion,
|
||||
which can be very useful when observing behaviour of turbulent
|
||||
simulations. (TODO)
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
/* Save the simulation state and print diagnostics */
|
||||
if ((i % bin_save_steps) == 0 || t_step >= bin_crit_t) {
|
||||
|
||||
/*
|
||||
This loop saves the data into simple C binaries which can be
|
||||
used for analysing the data snapshots closely.
|
||||
|
||||
Saving simulation state should happen in a separate stage. We do
|
||||
not want to save it as often as diagnostics. The file format
|
||||
should IDEALLY be HDF5 which has become a well supported, portable and
|
||||
reliable data format when it comes to HPC applications.
|
||||
However, implementing it will have to for more simpler approach
|
||||
to function. (TODO?)
|
||||
*/
|
||||
|
||||
/*
|
||||
The updated mesh will be located on the GPU. Also all calls
|
||||
to the astaroth interface (functions beginning with ac*) are
|
||||
assumed to be asynchronous, so the meshes must be also synchronized
|
||||
before transferring the data to the CPU. Like so:
|
||||
|
||||
acSynchronize();
|
||||
acStore(mesh);
|
||||
*/
|
||||
|
||||
acSynchronize();
|
||||
acStore(mesh);
|
||||
|
||||
save_mesh(*mesh, i, t_step);
|
||||
|
||||
bin_crit_t += bin_save_t;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//////Save the final snapshot
|
||||
////acSynchronize();
|
||||
////acStore(mesh);
|
||||
|
||||
////save_mesh(*mesh, , t_step);
|
||||
|
||||
acQuit();
|
||||
acmesh_destroy(mesh);
|
||||
|
||||
fclose(diag_file);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
64
src/standalone/timer_hires.h
Normal file
64
src/standalone/timer_hires.h
Normal file
@@ -0,0 +1,64 @@
|
||||
/*
|
||||
Copyright (C) 2014-2018, Johannes Pekkilae, Miikka Vaeisalae.
|
||||
|
||||
This file is part of Astaroth.
|
||||
|
||||
Astaroth is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Astaroth is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/**
|
||||
@file
|
||||
\brief High-resolution timer.
|
||||
|
||||
Usage:
|
||||
Timer t;
|
||||
timer_reset(&t);
|
||||
timer_diff_nsec(t);
|
||||
|
||||
If there are issues, try compiling with -std=gnu11 -lrt
|
||||
*/
|
||||
#pragma once
|
||||
#include <stdio.h> // perror
|
||||
#include <time.h>
|
||||
|
||||
typedef struct timespec Timer;
|
||||
// Contains at least the following members:
|
||||
// time_t tv_sec;
|
||||
// long tv_nsec;
|
||||
|
||||
static inline int
|
||||
timer_reset(Timer* t)
|
||||
{
|
||||
const int retval = clock_gettime(CLOCK_REALTIME, t);
|
||||
if (retval == -1)
|
||||
perror("clock_gettime failure");
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
static inline long
|
||||
timer_diff_nsec(const Timer start)
|
||||
{
|
||||
Timer end;
|
||||
timer_reset(&end);
|
||||
const long diff = (end.tv_sec - start.tv_sec) * 1000000000l +
|
||||
(end.tv_nsec - start.tv_nsec);
|
||||
return diff;
|
||||
}
|
||||
|
||||
static inline void
|
||||
timer_diff_print(const Timer t)
|
||||
{
|
||||
printf("Time elapsed: %g ms\n", timer_diff_nsec(t) / 1e6);
|
||||
}
|
Reference in New Issue
Block a user