Autoformatting
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
#include <stdderiv.h>
|
||||
|
||||
#include "stencil_definition.h"
|
||||
#include "stencil_assembly.h"
|
||||
#include "stencil_definition.h"
|
||||
|
||||
#if LUPWD
|
||||
Device Scalar
|
||||
@@ -22,42 +22,44 @@ gradients(in VectorField uu)
|
||||
|
||||
#if LSINK
|
||||
Device Vector
|
||||
sink_gravity(int3 globalVertexIdx){
|
||||
sink_gravity(int3 globalVertexIdx)
|
||||
{
|
||||
int accretion_switch = int(AC_switch_accretion);
|
||||
if (accretion_switch == 1){
|
||||
if (accretion_switch == 1) {
|
||||
Vector force_gravity;
|
||||
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
||||
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
|
||||
const Scalar sink_mass = AC_M_sink;
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
||||
AC_sink_pos_y,
|
||||
AC_sink_pos_z};
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x, AC_sink_pos_y, AC_sink_pos_z};
|
||||
const Scalar distance = length(grid_pos - sink_pos);
|
||||
const Scalar soft = AC_soft;
|
||||
//MV: The commit 083ff59 had AC_G_const defined wrong here in DSL making it exxessively strong.
|
||||
//MV: Scalar gravity_magnitude = ... below is correct!
|
||||
const Scalar gravity_magnitude = (AC_G_const * sink_mass) / pow(((distance * distance) + soft*soft), 1.5);
|
||||
// MV: The commit 083ff59 had AC_G_const defined wrong here in DSL making it exxessively
|
||||
// strong. MV: Scalar gravity_magnitude = ... below is correct!
|
||||
const Scalar gravity_magnitude = (AC_G_const * sink_mass) /
|
||||
pow(((distance * distance) + soft * soft), 1.5);
|
||||
const Vector direction = (Vector){(sink_pos.x - grid_pos.x) / distance,
|
||||
(sink_pos.y - grid_pos.y) / distance,
|
||||
(sink_pos.z - grid_pos.z) / distance};
|
||||
force_gravity = gravity_magnitude * direction;
|
||||
return force_gravity;
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
return (Vector){0.0, 0.0, 0.0};
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if LSINK
|
||||
// Give Truelove density
|
||||
Device Scalar
|
||||
truelove_density(in ScalarField lnrho){
|
||||
truelove_density(in ScalarField lnrho)
|
||||
{
|
||||
const Scalar rho = exp(value(lnrho));
|
||||
const Scalar Jeans_length_squared = (M_PI * AC_cs2_sound) / (AC_G_const * rho);
|
||||
const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) / (AC_G_const * AC_dsx * AC_dsx);
|
||||
//TODO: AC_dsx will cancel out, deal with it later for optimization.
|
||||
const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) /
|
||||
(AC_G_const * AC_dsx * AC_dsx);
|
||||
// TODO: AC_dsx will cancel out, deal with it later for optimization.
|
||||
|
||||
Scalar accretion_rho = TJ_rho;
|
||||
|
||||
@@ -66,39 +68,41 @@ truelove_density(in ScalarField lnrho){
|
||||
|
||||
// This controls accretion of density/mass to the sink particle.
|
||||
Device Scalar
|
||||
sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
|
||||
sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt)
|
||||
{
|
||||
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
||||
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
||||
AC_sink_pos_y,
|
||||
AC_sink_pos_z};
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x, AC_sink_pos_y, AC_sink_pos_z};
|
||||
const Scalar profile_range = AC_accretion_range;
|
||||
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
Scalar accretion_density;
|
||||
Scalar weight;
|
||||
|
||||
if (accretion_switch == 1){
|
||||
if ((accretion_distance) <= profile_range){
|
||||
//weight = Scalar(1.0);
|
||||
//Hann window function
|
||||
Scalar window_ratio = accretion_distance/profile_range;
|
||||
weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio));
|
||||
} else {
|
||||
if (accretion_switch == 1) {
|
||||
if ((accretion_distance) <= profile_range) {
|
||||
// weight = Scalar(1.0);
|
||||
// Hann window function
|
||||
Scalar window_ratio = accretion_distance / profile_range;
|
||||
weight = Scalar(0.5) * (Scalar(1.0) - cos(Scalar(2.0) * M_PI * window_ratio));
|
||||
}
|
||||
else {
|
||||
weight = Scalar(0.0);
|
||||
}
|
||||
|
||||
//Truelove criterion is used as a kind of arbitrary density floor.
|
||||
// Truelove criterion is used as a kind of arbitrary density floor.
|
||||
const Scalar lnrho_min = log(truelove_density(lnrho));
|
||||
Scalar rate;
|
||||
if (value(lnrho) > lnrho_min) {
|
||||
rate = (exp(value(lnrho)) - exp(lnrho_min)) / dt;
|
||||
} else {
|
||||
}
|
||||
else {
|
||||
rate = Scalar(0.0);
|
||||
}
|
||||
accretion_density = weight * rate ;
|
||||
} else {
|
||||
accretion_density = weight * rate;
|
||||
}
|
||||
else {
|
||||
accretion_density = Scalar(0.0);
|
||||
}
|
||||
return accretion_density;
|
||||
@@ -106,50 +110,50 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
|
||||
|
||||
// This controls accretion of velocity to the sink particle.
|
||||
Device Vector
|
||||
sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
|
||||
sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt)
|
||||
{
|
||||
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
||||
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
||||
AC_sink_pos_y,
|
||||
AC_sink_pos_z};
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x, AC_sink_pos_y, AC_sink_pos_z};
|
||||
const Scalar profile_range = AC_accretion_range;
|
||||
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
Vector accretion_velocity;
|
||||
|
||||
if (accretion_switch == 1){
|
||||
if (accretion_switch == 1) {
|
||||
Scalar weight;
|
||||
// Step function weighting
|
||||
// Arch of a cosine function?
|
||||
// Cubic spline x^3 - x in range [-0.5 , 0.5]
|
||||
if ((accretion_distance) <= profile_range){
|
||||
//weight = Scalar(1.0);
|
||||
//Hann window function
|
||||
Scalar window_ratio = accretion_distance/profile_range;
|
||||
weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio));
|
||||
} else {
|
||||
if ((accretion_distance) <= profile_range) {
|
||||
// weight = Scalar(1.0);
|
||||
// Hann window function
|
||||
Scalar window_ratio = accretion_distance / profile_range;
|
||||
weight = Scalar(0.5) * (Scalar(1.0) - cos(Scalar(2.0) * M_PI * window_ratio));
|
||||
}
|
||||
else {
|
||||
weight = Scalar(0.0);
|
||||
}
|
||||
|
||||
|
||||
Vector rate;
|
||||
// MV: Could we use divergence here ephasize velocitie which are compressive and
|
||||
// MV: not absorbins stuff that would not be accreted anyway?
|
||||
if (length(value(uu)) > Scalar(0.0)) {
|
||||
rate = (Scalar(1.0)/dt) * value(uu);
|
||||
} else {
|
||||
rate = (Scalar(1.0) / dt) * value(uu);
|
||||
}
|
||||
else {
|
||||
rate = (Vector){0.0, 0.0, 0.0};
|
||||
}
|
||||
accretion_velocity = weight * rate ;
|
||||
} else {
|
||||
accretion_velocity = weight * rate;
|
||||
}
|
||||
else {
|
||||
accretion_velocity = (Vector){0.0, 0.0, 0.0};
|
||||
}
|
||||
return accretion_velocity;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
Device Scalar
|
||||
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
||||
{
|
||||
@@ -164,11 +168,10 @@ continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar
|
||||
- divergence(uu);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if LENTROPY
|
||||
Device Vector
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt)
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss,
|
||||
in VectorField aa, Scalar dt)
|
||||
{
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
|
||||
@@ -188,16 +191,17 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
(laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
//Gravity term
|
||||
#if LSINK
|
||||
// Gravity term
|
||||
+ sink_gravity(globalVertexIdx)
|
||||
//Corresponding loss of momentum
|
||||
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
|
||||
// Corresponding loss of momentum
|
||||
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * //
|
||||
//Correction factor by unit mass
|
||||
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
|
||||
;
|
||||
#else
|
||||
#else
|
||||
;
|
||||
#endif
|
||||
#endif
|
||||
return mom;
|
||||
}
|
||||
#elif LTEMPERATURE
|
||||
@@ -215,11 +219,11 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
#if LSINK
|
||||
+ sink_gravity(globalVertexIdx);
|
||||
#else
|
||||
#else
|
||||
;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if LGRAVITY
|
||||
mom = mom - (Vector){0, 0, -10.0};
|
||||
@@ -240,15 +244,16 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar d
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
#if LSINK
|
||||
+ sink_gravity(globalVertexIdx)
|
||||
//Corresponding loss of momentum
|
||||
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
|
||||
// Corresponding loss of momentum
|
||||
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction
|
||||
//factor by unit mass
|
||||
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
|
||||
;
|
||||
#else
|
||||
#else
|
||||
;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if LGRAVITY
|
||||
mom = mom - (Vector){0, 0, -10.0};
|
||||
@@ -339,22 +344,26 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
|
||||
#if LFORCING
|
||||
Device Vector
|
||||
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude){
|
||||
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude)
|
||||
{
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
|
||||
if (accretion_switch == 0){
|
||||
return magnitude * cross(normalized(b - a), (Vector){ 0, 0, 1}); // Vortex
|
||||
} else {
|
||||
return (Vector){0,0,0};
|
||||
if (accretion_switch == 0) {
|
||||
return magnitude * cross(normalized(b - a), (Vector){0, 0, 1}); // Vortex
|
||||
}
|
||||
else {
|
||||
return (Vector){0, 0, 0};
|
||||
}
|
||||
}
|
||||
Device Vector
|
||||
simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude){
|
||||
simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude)
|
||||
{
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
if (accretion_switch == 0){
|
||||
if (accretion_switch == 0) {
|
||||
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
|
||||
} else {
|
||||
return (Vector){0,0,0};
|
||||
}
|
||||
else {
|
||||
return (Vector){0, 0, 0};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -398,41 +407,45 @@ Vector
|
||||
forcing(int3 globalVertexIdx, Scalar dt)
|
||||
{
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
if (accretion_switch == 0){
|
||||
if (accretion_switch == 0) {
|
||||
|
||||
Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx,
|
||||
globalGridN.y * AC_dsy,
|
||||
Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx, globalGridN.y * AC_dsy,
|
||||
globalGridN.z * AC_dsz}; // source (origin)
|
||||
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
||||
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
|
||||
(globalVertexIdx.z - DCONST(AC_nz_min)) *
|
||||
AC_dsz}; // sink (current index)
|
||||
const Scalar cs2 = AC_cs2_sound;
|
||||
const Scalar cs = sqrt(cs2);
|
||||
|
||||
//Placeholders until determined properly
|
||||
// Placeholders until determined properly
|
||||
Scalar magnitude = AC_forcing_magnitude;
|
||||
Scalar phase = AC_forcing_phase;
|
||||
Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez};
|
||||
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
|
||||
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
|
||||
|
||||
// Determine that forcing funtion type at this point.
|
||||
// Vector force = simple_vortex_forcing(a, xx, magnitude);
|
||||
// Vector force = simple_outward_flow_forcing(a, xx, magnitude);
|
||||
Vector force = helical_forcing(magnitude, k_force, xx, ff_re, ff_im, phase);
|
||||
|
||||
//Determine that forcing funtion type at this point.
|
||||
//Vector force = simple_vortex_forcing(a, xx, magnitude);
|
||||
//Vector force = simple_outward_flow_forcing(a, xx, magnitude);
|
||||
Vector force = helical_forcing(magnitude, k_force, xx, ff_re,ff_im, phase);
|
||||
// Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
|
||||
const Scalar NN = cs * sqrt(AC_kaver * cs);
|
||||
// MV: Like in the Pencil Code. I don't understandf the logic here.
|
||||
force.x = sqrt(dt) * NN * force.x;
|
||||
force.y = sqrt(dt) * NN * force.y;
|
||||
force.z = sqrt(dt) * NN * force.z;
|
||||
|
||||
//Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
|
||||
const Scalar NN = cs*sqrt(AC_kaver*cs);
|
||||
//MV: Like in the Pencil Code. I don't understandf the logic here.
|
||||
force.x = sqrt(dt)*NN*force.x;
|
||||
force.y = sqrt(dt)*NN*force.y;
|
||||
force.z = sqrt(dt)*NN*force.z;
|
||||
|
||||
if (is_valid(force)) { return force; }
|
||||
else { return (Vector){0, 0, 0}; }
|
||||
} else {
|
||||
return (Vector){0,0,0};
|
||||
if (is_valid(force)) {
|
||||
return force;
|
||||
}
|
||||
else {
|
||||
return (Vector){0, 0, 0};
|
||||
}
|
||||
}
|
||||
else {
|
||||
return (Vector){0, 0, 0};
|
||||
}
|
||||
}
|
||||
#endif // LFORCING
|
||||
@@ -492,10 +505,11 @@ solve()
|
||||
#endif
|
||||
|
||||
#if LSINK
|
||||
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), dt);// unit now is rho!
|
||||
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt),
|
||||
dt); // unit now is rho!
|
||||
|
||||
if (step_number == 2) {
|
||||
out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz;// unit is now mass!
|
||||
out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz; // unit is now mass!
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
Reference in New Issue
Block a user