Merge branch 'master' into sink_20190723

Hopefully the merge isssues were resolved.
This commit is contained in:
Miikka Vaisala
2019-09-02 11:58:48 +08:00
29 changed files with 1364 additions and 592 deletions

View File

@@ -8,17 +8,21 @@ FILENAME="${FULL_NAME%.*}"
EXTENSION="${FULL_NAME##*.}"
if [ "${EXTENSION}" = "sas" ]; then
echo "Generating stencil assembly stage ${FILENAME}.sas -> stencil_assembly.cuh"
COMPILE_FLAGS="-sas" # Generate stencil assembly stage
CUH_FILENAME="stencil_assembly.cuh"
echo "Generating stencil assembly stage ${FILENAME}.sas -> ${CUH_FILENAME}"
elif [ "${EXTENSION}" = "sps" ]; then
echo "Generating stencil processing stage: ${FILENAME}.sps -> stencil_process.cuh"
COMPILE_FLAGS="-sps" # Generate stencil processing stage
CUH_FILENAME="stencil_process.cuh"
echo "Generating stencil processing stage: ${FILENAME}.sps -> ${CUH_FILENAME}"
elif [ "${EXTENSION}" = "sdh" ]; then
COMPILE_FLAGS="-sdh" # Generate stencil definition header
CUH_FILENAME="stencil_defines.h"
echo "Generating stencil definition header: ${FILENAME}.sdh -> ${CUH_FILENAME}"
else
echo "Error: unknown extension" ${EXTENSION} "of file" ${FULL_NAME}
echo "Extension should be either .sas or .sps"
echo "Extension should be either .sas, .sps or .sdh"
exit
fi
${ACC_DIR}/preprocess.sh $2 $1 | ${ACC_DIR}/build/acc ${COMPILE_FLAGS} > ${CUH_FILENAME}
${ACC_DIR}/preprocess.sh $1 | ${ACC_DIR}/build/acc ${COMPILE_FLAGS} > ${CUH_FILENAME}

5
acc/mhd_solver/.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
build
testbin
# Except this file
!.gitignore

View File

@@ -1,3 +1,5 @@
#include "stencil_definition.sdh"
Preprocessed Scalar
value(in ScalarField vertex)
{
@@ -7,9 +9,7 @@ value(in ScalarField vertex)
Preprocessed Vector
gradient(in ScalarField vertex)
{
return (Vector){derx(vertexIdx, vertex),
dery(vertexIdx, vertex),
derz(vertexIdx, vertex)};
return (Vector){derx(vertexIdx, vertex), dery(vertexIdx, vertex), derz(vertexIdx, vertex)};
}
#if LUPWD
@@ -17,46 +17,46 @@ gradient(in ScalarField vertex)
Preprocessed Scalar
der6x_upwd(in ScalarField vertex)
{
Scalar inv_ds = DCONST_REAL(AC_inv_dsx);
Scalar inv_ds = AC_inv_dsx;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
- Scalar(20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+ Scalar(15.0)*(vertex[vertexIdx.x+1, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-1, vertexIdx.y, vertexIdx.z])
- Scalar( 6.0)*(vertex[vertexIdx.x+2, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-2, vertexIdx.y, vertexIdx.z])
+ vertex[vertexIdx.x+3, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-3, vertexIdx.y, vertexIdx.z])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x + 1, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 1, vertexIdx.y, vertexIdx.z]) -
Scalar(6.0) * (vertex[vertexIdx.x + 2, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 2, vertexIdx.y, vertexIdx.z]) +
vertex[vertexIdx.x + 3, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 3, vertexIdx.y, vertexIdx.z])};
}
Preprocessed Scalar
der6y_upwd(in ScalarField vertex)
{
Scalar inv_ds = DCONST_REAL(AC_inv_dsy);
Scalar inv_ds = AC_inv_dsy;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
-Scalar( 20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+Scalar( 15.0)*(vertex[vertexIdx.x, vertexIdx.y+1, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-1, vertexIdx.z])
-Scalar( 6.0)*(vertex[vertexIdx.x, vertexIdx.y+2, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-2, vertexIdx.z])
+ vertex[vertexIdx.x, vertexIdx.y+3, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-3, vertexIdx.z])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y + 1, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 1, vertexIdx.z]) -
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y + 2, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 2, vertexIdx.z]) +
vertex[vertexIdx.x, vertexIdx.y + 3, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 3, vertexIdx.z])};
}
Preprocessed Scalar
der6z_upwd(in ScalarField vertex)
{
Scalar inv_ds = DCONST_REAL(AC_inv_dsz);
Scalar inv_ds = AC_inv_dsz;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
-Scalar( 20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+Scalar( 15.0)*(vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+1]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-1])
-Scalar( 6.0)*(vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+2]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-2])
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+3]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-3])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 1] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 1]) -
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 2] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 2]) +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 3] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 3])};
}
#endif
@@ -66,9 +66,10 @@ hessian(in ScalarField vertex)
{
Matrix hessian;
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex), derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex),
derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
return hessian;
}

View File

@@ -1,181 +0,0 @@
/*
Copyright (C) 2014-2019, Johannes Pekkilae, Miikka Vaeisalae.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/*
* =============================================================================
* Logical switches
* =============================================================================
*/
#define STENCIL_ORDER (6)
#define NGHOST (STENCIL_ORDER / 2)
#define LDENSITY (1)
#define LHYDRO (1)
#define LMAGNETIC (1)
#define LENTROPY (0)
#define LTEMPERATURE (0)
#define LFORCING (0)
#define LUPWD (1)
#define LSINK (1)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
/*
* =============================================================================
* User-defined parameters
* =============================================================================
*/
// clang-format off
#define AC_FOR_USER_INT_PARAM_TYPES(FUNC)\
/* Other */\
FUNC(AC_max_steps), \
FUNC(AC_save_steps), \
FUNC(AC_bin_steps), \
FUNC(AC_bc_type),
#define AC_FOR_USER_INT3_PARAM_TYPES(FUNC)
#define AC_FOR_USER_REAL_PARAM_TYPES(FUNC)\
/* cparams */\
FUNC(AC_dsx), \
FUNC(AC_dsy), \
FUNC(AC_dsz), \
FUNC(AC_dsmin), \
/* physical grid*/\
FUNC(AC_xlen), \
FUNC(AC_ylen), \
FUNC(AC_zlen), \
FUNC(AC_xorig), \
FUNC(AC_yorig), \
FUNC(AC_zorig), \
/*Physical units*/\
FUNC(AC_unit_density),\
FUNC(AC_unit_velocity),\
FUNC(AC_unit_length),\
/* properties of gravitating star*/\
FUNC(AC_star_pos_x),\
FUNC(AC_star_pos_y),\
FUNC(AC_star_pos_z),\
FUNC(AC_M_star),\
/* properties of sink particle*/\
FUNC(AC_sink_pos_x),\
FUNC(AC_sink_pos_y),\
FUNC(AC_sink_pos_z),\
FUNC(AC_M_sink),\
FUNC(AC_M_sink_init),\
FUNC(AC_M_sink_Msun),\
FUNC(AC_soft),\
FUNC(AC_accretion_range),\
FUNC(AC_switch_accretion),\
/* Run params */\
FUNC(AC_cdt), \
FUNC(AC_cdtv), \
FUNC(AC_cdts), \
FUNC(AC_nu_visc), \
FUNC(AC_cs_sound), \
FUNC(AC_eta), \
FUNC(AC_mu0), \
FUNC(AC_cp_sound), \
FUNC(AC_gamma), \
FUNC(AC_cv_sound), \
FUNC(AC_lnT0), \
FUNC(AC_lnrho0), \
FUNC(AC_zeta), \
FUNC(AC_trans),\
/* Other */\
FUNC(AC_bin_save_t), \
/* Initial condition params */\
FUNC(AC_ampl_lnrho), \
FUNC(AC_ampl_uu), \
FUNC(AC_angl_uu), \
FUNC(AC_lnrho_edge),\
FUNC(AC_lnrho_out),\
/* Forcing parameters. User configured. */\
FUNC(AC_forcing_magnitude),\
FUNC(AC_relhel), \
FUNC(AC_kmin), \
FUNC(AC_kmax), \
/* Forcing parameters. Set by the generator. */\
FUNC(AC_forcing_phase),\
FUNC(AC_k_forcex),\
FUNC(AC_k_forcey),\
FUNC(AC_k_forcez),\
FUNC(AC_kaver),\
FUNC(AC_ff_hel_rex),\
FUNC(AC_ff_hel_rey),\
FUNC(AC_ff_hel_rez),\
FUNC(AC_ff_hel_imx),\
FUNC(AC_ff_hel_imy),\
FUNC(AC_ff_hel_imz),\
/* Additional helper params */\
/* (deduced from other params do not set these directly!) */\
FUNC(AC_G_const),\
FUNC(AC_unit_mass),\
FUNC(AC_GM_star),\
FUNC(AC_sq2GM_star),\
FUNC(AC_cs2_sound), \
FUNC(AC_inv_dsx), \
FUNC(AC_inv_dsy), \
FUNC(AC_inv_dsz),
#define AC_FOR_USER_REAL3_PARAM_TYPES(FUNC)
// clang-format on
/*
* =============================================================================
* User-defined vertex buffers
* =============================================================================
*/
// clang-format off
#if LENTROPY
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO), \
/*Added vertex buffer for sink. TODO: Invoke smarter.*/\
FUNC(VTXBUF_ACCRETION), \
FUNC(VTXBUF_UUX), \
FUNC(VTXBUF_UUY), \
FUNC(VTXBUF_UUZ), \
FUNC(VTXBUF_AX), \
FUNC(VTXBUF_AY), \
FUNC(VTXBUF_AZ), \
FUNC(VTXBUF_ENTROPY),
#elif LMAGNETIC
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO), \
/*Added vertex buffer for sink. TODO: Invoke smarter.*/\
FUNC(VTXBUF_ACCRETION), \
FUNC(VTXBUF_UUX), \
FUNC(VTXBUF_UUY), \
FUNC(VTXBUF_UUZ), \
FUNC(VTXBUF_AX), \
FUNC(VTXBUF_AY), \
FUNC(VTXBUF_AZ),
#elif LHYDRO
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO), \
/*Added vertex buffer for sink. TODO: Invoke smarter.*/\
FUNC(VTXBUF_ACCRETION), \
FUNC(VTXBUF_UUX), \
FUNC(VTXBUF_UUY), \
FUNC(VTXBUF_UUZ),
#else
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO),
#endif
// clang-format on

View File

@@ -0,0 +1,130 @@
#define LDENSITY (1)
#define LHYDRO (1)
#define LMAGNETIC (1)
#define LENTROPY (1)
#define LTEMPERATURE (0)
#define LFORCING (1)
#define LUPWD (1)
#define LSINK (1)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
// Int params
uniform int AC_max_steps;
uniform int AC_save_steps;
uniform int AC_bin_steps;
uniform int AC_bc_type;
// Real params
uniform Scalar AC_dt;
// Spacing
uniform Scalar AC_dsx;
uniform Scalar AC_dsy;
uniform Scalar AC_dsz;
uniform Scalar AC_dsmin;
// physical grid
uniform Scalar AC_xlen;
uniform Scalar AC_ylen;
uniform Scalar AC_zlen;
uniform Scalar AC_xorig;
uniform Scalar AC_yorig;
uniform Scalar AC_zorig;
// Physical units
uniform Scalar AC_unit_density;
uniform Scalar AC_unit_velocity;
uniform Scalar AC_unit_length;
// properties of gravitating star
uniform Scalar AC_star_pos_x;
uniform Scalar AC_star_pos_y;
uniform Scalar AC_star_pos_z;
uniform Scalar AC_M_star;
// properties of sink particle
uniform Scalar AC_sink_pos_x;
uniform Scalar AC_sink_pos_y;
uniform Scalar AC_sink_pos_z;
uniform Scalar AC_M_sink;
uniform Scalar AC_M_sink_init;
uniform Scalar AC_M_sink_Msun;
uniform Scalar AC_soft;
uniform Scalar AC_accretion_range;
uniform Scalar AC_switch_accretion;
// Run params
uniform Scalar AC_cdt;
uniform Scalar AC_cdtv;
uniform Scalar AC_cdts;
uniform Scalar AC_nu_visc;
uniform Scalar AC_cs_sound;
uniform Scalar AC_eta;
uniform Scalar AC_mu0;
uniform Scalar AC_cp_sound;
uniform Scalar AC_gamma;
uniform Scalar AC_cv_sound;
uniform Scalar AC_lnT0;
uniform Scalar AC_lnrho0;
uniform Scalar AC_zeta;
uniform Scalar AC_trans;
// Other
uniform Scalar AC_bin_save_t;
// Initial condition params
uniform Scalar AC_ampl_lnrho;
uniform Scalar AC_ampl_uu;
uniform Scalar AC_angl_uu;
uniform Scalar AC_lnrho_edge;
uniform Scalar AC_lnrho_out;
// Forcing parameters. User configured.
uniform Scalar AC_forcing_magnitude;
uniform Scalar AC_relhel;
uniform Scalar AC_kmin;
uniform Scalar AC_kmax;
// Forcing parameters. Set by the generator.
uniform Scalar AC_forcing_phase;
uniform Scalar AC_k_forcex;
uniform Scalar AC_k_forcey;
uniform Scalar AC_k_forcez;
uniform Scalar AC_kaver;
uniform Scalar AC_ff_hel_rex;
uniform Scalar AC_ff_hel_rey;
uniform Scalar AC_ff_hel_rez;
uniform Scalar AC_ff_hel_imx;
uniform Scalar AC_ff_hel_imy;
uniform Scalar AC_ff_hel_imz;
// Additional helper params // (deduced from other params do not set these directly!)
uniform Scalar AC_G_CONST;
uniform Scalar AC_GM_star;
uniform Scalar AC_unit_mass;
uniform Scalar AC_sq2GM_star;
uniform Scalar AC_cs2_sound;
uniform Scalar AC_inv_dsx;
uniform Scalar AC_inv_dsy;
uniform Scalar AC_inv_dsz;
/*
* =============================================================================
* User-defined vertex buffers
* =============================================================================
*/
#if LENTROPY
uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_UUX;
uniform ScalarField VTXBUF_UUY;
uniform ScalarField VTXBUF_UUZ;
uniform ScalarField VTXBUF_AX;
uniform ScalarField VTXBUF_AY;
uniform ScalarField VTXBUF_AZ;
uniform ScalarField VTXBUF_ENTROPY;
#elif LMAGNETIC
uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_UUX;
uniform ScalarField VTXBUF_UUY;
uniform ScalarField VTXBUF_UUZ;
uniform ScalarField VTXBUF_AX;
uniform ScalarField VTXBUF_AY;
uniform ScalarField VTXBUF_AZ;
#elif LHYDRO
uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_UUX;
uniform ScalarField VTXBUF_UUY;
uniform ScalarField VTXBUF_UUZ;
#else
uniform ScalarField VTXBUF_LNRHO;
#endif

View File

@@ -1,26 +1,4 @@
// Declare uniforms (i.e. device constants)
uniform Scalar cs2_sound;
uniform Scalar nu_visc;
uniform Scalar cp_sound;
uniform Scalar cv_sound;
uniform Scalar mu0;
uniform Scalar eta;
uniform Scalar gamma;
uniform Scalar zeta;
uniform Scalar dsx;
uniform Scalar dsy;
uniform Scalar dsz;
uniform Scalar lnT0;
uniform Scalar lnrho0;
uniform int nx_min;
uniform int ny_min;
uniform int nz_min;
uniform int nx;
uniform int ny;
uniform int nz;
#include "stencil_definition.sdh"
Vector
value(in VectorField uu)
@@ -35,7 +13,7 @@ upwd_der6(in VectorField uu, in ScalarField lnrho)
Scalar uux = fabs(value(uu).x);
Scalar uuy = fabs(value(uu).y);
Scalar uuz = fabs(value(uu).z);
return (Scalar){uux*der6x_upwd(lnrho) + uuy*der6y_upwd(lnrho) + uuz*der6z_upwd(lnrho)};
return (Scalar){uux * der6x_upwd(lnrho) + uuy * der6y_upwd(lnrho) + uuz * der6z_upwd(lnrho)};
}
#endif
@@ -167,12 +145,12 @@ sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
#endif
Scalar
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt) {
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
{
return -dot(value(uu), gradient(lnrho))
#if LUPWD
//This is a corrective hyperdiffusion term for upwinding.
// This is a corrective hyperdiffusion term for upwinding.
+ upwd_der6(uu, lnrho)
#endif
#if LSINK
@@ -185,148 +163,159 @@ continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar
#if LENTROPY
Vector
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt) {
const Matrix S = stress_tensor(uu);
const Scalar cs2 = cs2_sound * exp(gamma * value(ss) / cp_sound + (gamma - 1) * (value(lnrho) - lnrho0));
const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt)
{
const Matrix S = stress_tensor(uu);
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
const Vector j = (Scalar(1.) / AC_mu0) *
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Vector B = curl(aa);
//TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
// TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
// \1
const Vector mom = - mul(gradients(uu), value(uu))
- cs2 * ((Scalar(1.) / cp_sound) * gradient(ss) + gradient(lnrho))
+ inv_rho * cross(j, B)
+ nu_visc * (
laplace_vec(uu)
+ Scalar(1. / 3.) * gradient_of_divergence(uu)
+ Scalar(2.) * mul(S, gradient(lnrho))
)
+ zeta * gradient_of_divergence(uu)
const Vector mom = -mul(gradients(uu), value(uu)) -
cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
inv_rho * cross(j, B) +
AC_nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu)
#if LSINK
//Gravity term
+ sink_gravity(globalVertexIdx)
//Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (dsx*dsy*dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
;
//Gravity term
+ sink_gravity(globalVertexIdx)
//Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (dsx*dsy*dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
;
#else
;
;
#endif
return mom;
}
#elif LTEMPERATURE
Vector
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt) {
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{
Vector mom;
const Matrix S = stress_tensor(uu);
const Vector pressure_term = (cp_sound - cv_sound) * (gradient(tt) + value(tt) * gradient(lnrho));
mom = -mul(gradients(uu), value(uu)) -
pressure_term +
nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
const Matrix S = stress_tensor(uu);
const Vector pressure_term = (AC_cp_sound - AC_cv_sound) *
(gradient(tt) + value(tt) * gradient(lnrho));
mom = -mul(gradients(uu), value(uu)) - pressure_term +
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu)
#if LSINK
+ sink_gravity(globalVertexIdx);
+ sink_gravity(globalVertexIdx);
#else
;
;
#endif
return mom;
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
return mom;
}
#else
Vector
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt) {
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
{
Vector mom;
const Matrix S = stress_tensor(uu);
// Isothermal: we have constant speed of sound
mom = -mul(gradients(uu), value(uu)) -
cs2_sound * gradient(lnrho) +
nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) +
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu)
#if LSINK
+ sink_gravity(globalVertexIdx);
//Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (dsx*dsy*dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
;
+ sink_gravity(globalVertexIdx)
//Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (dsx*dsy*dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
;
#else
;
;
#endif
return mom;
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
return mom;
}
#endif
Vector
induction(in VectorField uu, in VectorField aa) {
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
induction(in VectorField uu, in VectorField aa)
{
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
// Note, mu0 is cancelled out
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
// Note, AC_mu0 is cancelled out
const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap);
return ind;
return ind;
}
#if LENTROPY
Scalar
lnT( in ScalarField ss, in ScalarField lnrho) {
const Scalar lnT = lnT0 + gamma * value(ss) / cp_sound +
(gamma - Scalar(1.)) * (value(lnrho) - lnrho0);
return lnT;
lnT(in ScalarField ss, in ScalarField lnrho)
{
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
return lnT;
}
// Nabla dot (K nabla T) / (rho T)
Scalar
heat_conduction( in ScalarField ss, in ScalarField lnrho) {
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
heat_conduction(in ScalarField ss, in ScalarField lnrho)
{
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
const Vector grad_ln_chi = - gradient(lnrho);
const Vector grad_ln_chi = -gradient(lnrho);
const Scalar first_term = gamma * inv_cp_sound * laplace(ss) +
(gamma - AcReal(1.)) * laplace(lnrho);
const Vector second_term = gamma * inv_cp_sound * gradient(ss) +
(gamma - AcReal(1.)) * gradient(lnrho);
const Vector third_term = gamma * (inv_cp_sound * gradient(ss) +
gradient(lnrho)) + grad_ln_chi;
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
(AC_gamma - AcReal(1.)) * laplace(lnrho);
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
(AC_gamma - AcReal(1.)) * gradient(lnrho);
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) +
grad_ln_chi;
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * cp_sound);
return cp_sound * chi * (first_term + dot(second_term, third_term));
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound);
return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
}
Scalar
heating(const int i, const int j, const int k) {
return 1;
heating(const int i, const int j, const int k)
{
return 1;
}
Scalar
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) {
const Matrix S = stress_tensor(uu);
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
{
const Matrix S = stress_tensor(uu);
const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Scalar RHS = H_CONST - C_CONST
+ eta * (mu0) * dot(j, j)
+ Scalar(2.) * exp(value(lnrho)) * nu_visc * contract(S)
+ zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
const Vector j = (Scalar(1.) / AC_mu0) *
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) +
Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
return - dot(value(uu), gradient(ss))
+ inv_pT * RHS
+ heat_conduction(ss, lnrho);
return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho);
}
#endif
@@ -334,14 +323,15 @@ entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorFie
Scalar
heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{
const Matrix S = stress_tensor(uu);
const Scalar heat_diffusivity_k = 0.0008; //8e-4;
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) + heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) + nu_visc * contract(S) * (Scalar(1.) / cv_sound) - (gamma - 1) * value(tt) * divergence(uu);
const Matrix S = stress_tensor(uu);
const Scalar heat_diffusivity_k = 0.0008; // 8e-4;
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) +
heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) +
AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) -
(AC_gamma - 1) * value(tt) * divergence(uu);
}
#endif
#if LFORCING
Vector
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude){
@@ -363,50 +353,40 @@ Vector
}
}
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable helicity
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable
// helicity
Vector
helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi)
{
int accretion_switch = DCONST_INT(AC_switch_accretion);
if (accretion_switch == 0){
// JP: This looks wrong:
// 1) Should it be AC_dsx * AC_nx instead of AC_dsx * AC_ny?
// 2) Should you also use globalGrid.n instead of the local n?
// MV: You are rigth. Made a quickfix. I did not see the error because multigpu is split
// in z direction not y direction.
// 3) Also final point: can we do this with vectors/quaternions instead?
// Tringonometric functions are much more expensive and inaccurate/
// MV: Good idea. No an immediate priority.
// Fun related article:
// https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
xx.x = xx.x * (2.0 * M_PI / (AC_dsx * globalGridN.x));
xx.y = xx.y * (2.0 * M_PI / (AC_dsy * globalGridN.y));
xx.z = xx.z * (2.0 * M_PI / (AC_dsz * globalGridN.z));
// JP: This looks wrong:
// 1) Should it be dsx * nx instead of dsx * ny?
// 2) Should you also use globalGrid.n instead of the local n?
// MV: You are rigth. Made a quickfix. I did not see the error because multigpu is split
// in z direction not y direction.
// 3) Also final point: can we do this with vectors/quaternions instead?
// Tringonometric functions are much more expensive and inaccurate/
// MV: Good idea. No an immediate priority.
// Fun related article:
// https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
xx.x = xx.x*(2.0*M_PI/(dsx*globalGridN.x));
xx.y = xx.y*(2.0*M_PI/(dsy*globalGridN.y));
xx.z = xx.z*(2.0*M_PI/(dsz*globalGridN.z));
Scalar cos_phi = cos(phi);
Scalar sin_phi = sin(phi);
Scalar cos_k_dot_x = cos(dot(k_force, xx));
Scalar sin_k_dot_x = sin(dot(k_force, xx));
// Phase affect only the x-component
//Scalar real_comp = cos_k_dot_x;
//Scalar imag_comp = sin_k_dot_x;
Scalar real_comp_phase = cos_k_dot_x*cos_phi - sin_k_dot_x*sin_phi;
Scalar imag_comp_phase = cos_k_dot_x*sin_phi + sin_k_dot_x*cos_phi;
Vector force = (Vector){ ff_re.x*real_comp_phase - ff_im.x*imag_comp_phase,
ff_re.y*real_comp_phase - ff_im.y*imag_comp_phase,
ff_re.z*real_comp_phase - ff_im.z*imag_comp_phase};
return force;
} else {
return (Vector){0,0,0};
}
Scalar cos_phi = cos(phi);
Scalar sin_phi = sin(phi);
Scalar cos_k_dot_x = cos(dot(k_force, xx));
Scalar sin_k_dot_x = sin(dot(k_force, xx));
// Phase affect only the x-component
// Scalar real_comp = cos_k_dot_x;
// Scalar imag_comp = sin_k_dot_x;
Scalar real_comp_phase = cos_k_dot_x * cos_phi - sin_k_dot_x * sin_phi;
Scalar imag_comp_phase = cos_k_dot_x * sin_phi + sin_k_dot_x * cos_phi;
Vector force = (Vector){ff_re.x * real_comp_phase - ff_im.x * imag_comp_phase,
ff_re.y * real_comp_phase - ff_im.y * imag_comp_phase,
ff_re.z * real_comp_phase - ff_im.z * imag_comp_phase};
return force;
}
Vector
@@ -458,12 +438,11 @@ in ScalarField lnrho(VTXBUF_LNRHO);
out ScalarField out_lnrho(VTXBUF_LNRHO);
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
out VectorField out_uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
#if LMAGNETIC
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
in VectorField aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
out VectorField out_aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
#endif
#if LENTROPY
@@ -482,38 +461,36 @@ out Scalar out_accretion = VTXBUF_ACCRETION;
#endif
Kernel void
solve(Scalar dt) {
solve()
{
Scalar dt = AC_dt;
out_lnrho = rk3(out_lnrho, lnrho, continuity(globalVertexIdx, uu, lnrho, dt), dt);
#if LMAGNETIC
#if LMAGNETIC
out_aa = rk3(out_aa, aa, induction(uu, aa), dt);
#endif
#endif
#if LENTROPY
out_uu = rk3(out_uu, uu, momentum(globalVertexIdx, uu, lnrho, ss, aa, dt), dt);
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
#elif LTEMPERATURE
out_uu = rk3(out_uu, uu, momentum(globalVertexIdx, uu, lnrho, tt), dt);
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
#else
out_uu = rk3(out_uu, uu, momentum(globalVertexIdx, uu, lnrho, dt), dt);
#endif
#if LENTROPY
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt);
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
#elif LTEMPERATURE
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, tt), dt);
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
#else
out_uu = rk3(out_uu, uu, momentum(uu, lnrho), dt);
#endif
#if LFORCING
#if LFORCING
if (step_number == 2) {
out_uu = out_uu + forcing(globalVertexIdx, dt);
}
#endif
#if LSINK
// out_lnrho = log(exp(out_lnrho) - sink_accretion(globalVertexIdx, lnrho));
// out_accretion = value(accretion) + (sink_accretion(globalVertexIdx,lnrho) * dsx * dsy * dsz);
#endif
#if LSINK
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), dt);// unit now is rho!
// out_lnrho = log(exp(out_lnrho) - out_accretion);
if (step_number == 2) {
out_accretion = out_accretion * dsx * dsy * dsz;// unit is now mass!
}
//TODO: implement accretion correction to contiunity equation and momentum equation.
#endif
#endif
}

View File

@@ -15,7 +15,7 @@ L [a-zA-Z_]
"void" { return VOID; } /* Rest of the types inherited from C */
"int" { return INT; }
"int3" { return INT3; }
"ScalarField" { return SCALAR; }
"ScalarField" { return SCALARFIELD; }
"VectorField" { return VECTOR; }
"Kernel" { return KERNEL; } /* Function specifiers */

View File

@@ -16,7 +16,7 @@ int yyget_lineno();
%token CONSTANT IN OUT UNIFORM
%token IDENTIFIER NUMBER
%token RETURN
%token SCALAR VECTOR MATRIX
%token SCALAR VECTOR MATRIX SCALARFIELD
%token VOID INT INT3
%token IF ELSE FOR WHILE ELIF
%token LEQU LAND LOR LLEQU
@@ -209,6 +209,7 @@ type_specifier: VOID
| SCALAR { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = SCALAR; }
| VECTOR { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = VECTOR; }
| MATRIX { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = MATRIX; }
| SCALARFIELD { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = SCALARFIELD; }
;
identifier: IDENTIFIER { $$ = astnode_create(NODE_IDENTIFIER, NULL, NULL); astnode_set_buffer(yytext, $$); }

View File

@@ -36,7 +36,8 @@
ASTNode* root = NULL;
static const char inout_name_prefix[] = "handle_";
static bool doing_stencil_assembly = true;
typedef enum { STENCIL_ASSEMBLY, STENCIL_PROCESS, STENCIL_HEADER } CompilationType;
static CompilationType compilation_type;
/*
* =============================================================================
@@ -53,16 +54,17 @@ static const char* translation_table[TRANSLATION_TABLE_SIZE] = {
[WHILE] = "while",
[FOR] = "for",
// Type specifiers
[VOID] = "void",
[INT] = "int",
[INT3] = "int3",
[SCALAR] = "AcReal",
[VECTOR] = "AcReal3",
[MATRIX] = "AcMatrix",
[VOID] = "void",
[INT] = "int",
[INT3] = "int3",
[SCALAR] = "AcReal",
[VECTOR] = "AcReal3",
[MATRIX] = "AcMatrix",
[SCALARFIELD] = "AcReal",
// Type qualifiers
[KERNEL] = "template <int step_number> static "
"__global__", //__launch_bounds__(RK_THREADBLOCK_SIZE,
// RK_LAUNCH_BOUND_MIN_BLOCKS),
[KERNEL] = "template <int step_number> static __global__",
//__launch_bounds__(RK_THREADBLOCK_SIZE,
// RK_LAUNCH_BOUND_MIN_BLOCKS),
[PREPROCESSED] = "static __device__ "
"__forceinline__",
[CONSTANT] = "const",
@@ -212,11 +214,14 @@ translate_latest_symbol(void)
// FUNCTION PARAMETER
else if (symbol->type == SYMBOLTYPE_FUNCTION_PARAMETER) {
if (symbol->type_qualifier == IN || symbol->type_qualifier == OUT) {
if (doing_stencil_assembly)
if (compilation_type == STENCIL_ASSEMBLY)
printf("const __restrict__ %s* %s", translate(symbol->type_specifier),
symbol->identifier);
else
else if (compilation_type == STENCIL_PROCESS)
printf("const %sData& %s", translate(symbol->type_specifier), symbol->identifier);
else
printf("Invalid compilation type %d, IN and OUT qualifiers not supported\n",
compilation_type);
}
else {
print_symbol(handle);
@@ -224,14 +229,18 @@ translate_latest_symbol(void)
}
// UNIFORM
else if (symbol->type_qualifier == UNIFORM) {
// if (compilation_type != STENCIL_HEADER) {
// printf("ERROR: %s can only be used in stencil headers\n", translation_table[UNIFORM]);
//}
/* Do nothing */
}
// IN / OUT
else if (symbol->type != SYMBOLTYPE_FUNCTION_PARAMETER &&
(symbol->type_qualifier == IN || symbol->type_qualifier == OUT)) {
printf("static __device__ const %s %s%s", symbol->type_specifier == SCALAR ? "int" : "int3",
inout_name_prefix, symbol_table[handle].identifier);
printf("static __device__ const %s %s%s",
symbol->type_specifier == SCALARFIELD ? "int" : "int3", inout_name_prefix,
symbol_table[handle].identifier);
if (symbol->type_specifier == VECTOR)
printf(" = make_int3");
}
@@ -309,9 +318,15 @@ traverse(const ASTNode* node)
inside_kernel = true;
// Kernel parameter boilerplate
const char* kernel_parameter_boilerplate = "GEN_KERNEL_PARAM_BOILERPLATE, ";
if (inside_kernel && node->type == NODE_FUNCTION_PARAMETER_DECLARATION)
printf("%s ", kernel_parameter_boilerplate);
const char* kernel_parameter_boilerplate = "GEN_KERNEL_PARAM_BOILERPLATE";
if (inside_kernel && node->type == NODE_FUNCTION_PARAMETER_DECLARATION) {
printf("%s", kernel_parameter_boilerplate);
if (node->lhs != NULL) {
printf("Compilation error: function parameters for Kernel functions not allowed!\n");
exit(EXIT_FAILURE);
}
}
// Kernel builtin variables boilerplate (read input/output arrays and setup
// indices)
@@ -369,6 +384,8 @@ traverse(const ASTNode* node)
// printf("%s%s", inout_name_prefix, symbol->identifier);
//}
if (symbol->type_qualifier == UNIFORM) {
printf("DCONST(%s) ", symbol->identifier);
/*
if (symbol->type_specifier == SCALAR)
printf("DCONST_REAL(AC_%s) ", symbol->identifier);
else if (symbol->type_specifier == INT)
@@ -376,6 +393,7 @@ traverse(const ASTNode* node)
else
printf("INVALID UNIFORM type specifier %s with %s\n",
translate(symbol->type_specifier), symbol->identifier);
*/
}
else {
// Do a regular translation
@@ -545,14 +563,89 @@ generate_preprocessed_structures(void)
");
}
static void
generate_header(void)
{
printf("\n#pragma once\n");
// Int params
printf("#define AC_FOR_USER_INT_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == INT) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Int3 params
printf("#define AC_FOR_USER_INT3_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == INT3) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Scalar params
printf("#define AC_FOR_USER_REAL_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == SCALAR) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Vector params
printf("#define AC_FOR_USER_REAL3_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == VECTOR) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Scalar fields
printf("#define AC_FOR_VTXBUF_HANDLES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == SCALARFIELD) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
/*
printf("\n");
printf("typedef struct {\n");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
printf("%s %s;\n", translate(symbol_table[i].type_specifier),
symbol_table[i].identifier);
}
printf("} %sData;\n", translate(SCALAR));
*/
}
static void
generate_library_hooks(void)
{
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_qualifier == KERNEL) {
printf("GEN_DEVICE_FUNC_HOOK(%s)\n", symbol_table[i].identifier);
// printf("GEN_NODE_FUNC_HOOK(%s)\n", symbol_table[i].identifier);
}
}
}
int
main(int argc, char** argv)
{
if (argc == 2) {
if (!strcmp(argv[1], "-sas"))
doing_stencil_assembly = true;
compilation_type = STENCIL_ASSEMBLY;
else if (!strcmp(argv[1], "-sps"))
doing_stencil_assembly = false;
compilation_type = STENCIL_PROCESS;
else if (!strcmp(argv[1], "-sdh"))
compilation_type = STENCIL_HEADER;
else
printf("Unknown flag %s. Generating stencil assembly.\n", argv[1]);
}
@@ -560,8 +653,8 @@ main(int argc, char** argv)
printf("Usage: ./acc [flags]\n"
"Flags:\n"
"\t-sas - Generates code for the stencil assembly stage\n"
"\t-sps - Generates code for the stencil processing "
"stage\n");
"\t-sps - Generates code for the stencil processing stage\n"
"\t-hh - Generates stencil definitions from a header file\n");
printf("\n");
return EXIT_FAILURE;
}
@@ -576,8 +669,12 @@ main(int argc, char** argv)
// Traverse
traverse(root);
if (doing_stencil_assembly)
if (compilation_type == STENCIL_ASSEMBLY)
generate_preprocessed_structures();
else if (compilation_type == STENCIL_HEADER)
generate_header();
else if (compilation_type == STENCIL_PROCESS)
generate_library_hooks();
// print_symbol_table();