Autoformatted all CUDA/C/C++ code

This commit is contained in:
jpekkila
2019-06-18 16:42:56 +03:00
parent 6fdc4cddb2
commit 8864266042
12 changed files with 1053 additions and 1111 deletions

View File

@@ -36,7 +36,7 @@ typedef struct {
__constant__ AcMeshInfo d_mesh_info;
__constant__ int3 d_multigpu_offset;
__constant__ Grid globalGrid;
#define DCONST_INT(X) (d_mesh_info.int_params[X])
#define DCONST_INT(X) (d_mesh_info.int_params[X])
#define DCONST_REAL(X) (d_mesh_info.real_params[X])
#define DEVICE_VTXBUF_IDX(i, j, k) ((i) + (j)*DCONST_INT(AC_mx) + (k)*DCONST_INT(AC_mxy))
#define DEVICE_1D_COMPDOMAIN_IDX(i, j, k) ((i) + (j)*DCONST_INT(AC_nx) + (k)*DCONST_INT(AC_nxy))
@@ -76,46 +76,46 @@ printDeviceInfo(const Device device)
printf(" Clock rate (GHz): %g\n", props.clockRate / 1e6); // KHz -> GHz
printf(" Stream processors: %d\n", props.multiProcessorCount);
printf(" SP to DP flops performance ratio: %d:1\n", props.singleToDoublePrecisionPerfRatio);
printf(" Compute mode: %d\n", (int)props.computeMode); // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g7eb25f5413a962faad0956d92bae10d0
printf(
" Compute mode: %d\n",
(int)props
.computeMode); // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g7eb25f5413a962faad0956d92bae10d0
// Memory
printf(" Global memory\n");
printf(" Memory Clock Rate (MHz): %d\n", props.memoryClockRate / (1000));
printf(" Memory Bus Width (bits): %d\n", props.memoryBusWidth);
printf(" Peak Memory Bandwidth (GiB/s): %f\n",
2 * (props.memoryClockRate * 1e3) * props.memoryBusWidth /
(8. * 1024. * 1024. * 1024.));
2 * (props.memoryClockRate * 1e3) * props.memoryBusWidth / (8. * 1024. * 1024. * 1024.));
printf(" ECC enabled: %d\n", props.ECCEnabled);
// Memory usage
size_t free_bytes, total_bytes;
cudaMemGetInfo(&free_bytes, &total_bytes);
const size_t used_bytes = total_bytes - free_bytes;
printf(" Total global mem: %.2f GiB\n",
props.totalGlobalMem / (1024.0 * 1024 * 1024));
printf(" Total global mem: %.2f GiB\n", props.totalGlobalMem / (1024.0 * 1024 * 1024));
printf(" Gmem used (GiB): %.2f\n", used_bytes / (1024.0 * 1024 * 1024));
printf(" Gmem memory free (GiB): %.2f\n",
free_bytes / (1024.0 * 1024 * 1024));
printf(" Gmem memory total (GiB): %.2f\n",
total_bytes / (1024.0 * 1024 * 1024));
printf(" Gmem memory free (GiB): %.2f\n", free_bytes / (1024.0 * 1024 * 1024));
printf(" Gmem memory total (GiB): %.2f\n", total_bytes / (1024.0 * 1024 * 1024));
printf(" Caches\n");
printf(" Local L1 cache supported: %d\n", props.localL1CacheSupported);
printf(" Global L1 cache supported: %d\n", props.globalL1CacheSupported);
printf(" L2 size: %d KiB\n", props.l2CacheSize / (1024));
printf(" Total const mem: %ld KiB\n", props.totalConstMem / (1024));
printf(" Shared mem per block: %ld KiB\n",
props.sharedMemPerBlock / (1024));
printf(" Shared mem per block: %ld KiB\n", props.sharedMemPerBlock / (1024));
printf(" Other\n");
printf(" Warp size: %d\n", props.warpSize);
// printf(" Single to double perf. ratio: %dx\n",
// props.singleToDoublePrecisionPerfRatio); //Not supported with older CUDA
// versions
printf(" Stream priorities supported: %d\n",
props.streamPrioritiesSupported);
printf(" Stream priorities supported: %d\n", props.streamPrioritiesSupported);
printf("--------------------------------------------------\n");
return AC_SUCCESS;
}
static __global__ void dummy_kernel(void) {}
static __global__ void
dummy_kernel(void)
{
}
AcResult
createDevice(const int id, const AcMeshInfo device_config, Device* device_handle)
@@ -124,10 +124,10 @@ createDevice(const int id, const AcMeshInfo device_config, Device* device_handle
cudaDeviceReset();
// Create Device
struct device_s* device = (struct device_s*) malloc(sizeof(*device));
struct device_s* device = (struct device_s*)malloc(sizeof(*device));
ERRCHK_ALWAYS(device);
device->id = id;
device->id = id;
device->local_config = device_config;
// Check that the code was compiled for the proper GPU architecture
@@ -150,15 +150,14 @@ createDevice(const int id, const AcMeshInfo device_config, Device* device_handle
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->vba.in[i], vba_size_bytes));
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->vba.out[i], vba_size_bytes));
}
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->reduce_scratchpad,
AC_VTXBUF_COMPDOMAIN_SIZE_BYTES(device_config)));
ERRCHK_CUDA_ALWAYS(
cudaMalloc(&device->reduce_scratchpad, AC_VTXBUF_COMPDOMAIN_SIZE_BYTES(device_config)));
ERRCHK_CUDA_ALWAYS(cudaMalloc(&device->reduce_result, sizeof(AcReal)));
// Device constants
ERRCHK_CUDA_ALWAYS(cudaMemcpyToSymbol(d_mesh_info, &device_config, sizeof(device_config), 0,
cudaMemcpyHostToDevice));
// Multi-GPU offset. This is used to compute globalVertexIdx.
// Might be better to calculate this in astaroth.cu instead of here, s.t.
// everything related to the decomposition is limited to the multi-GPU layer
@@ -166,7 +165,6 @@ createDevice(const int id, const AcMeshInfo device_config, Device* device_handle
ERRCHK_CUDA_ALWAYS(cudaMemcpyToSymbol(d_multigpu_offset, &multigpu_offset,
sizeof(multigpu_offset), 0, cudaMemcpyHostToDevice));
printf("Created device %d (%p)\n", device->id, device);
*device_handle = device;
return AC_SUCCESS;
@@ -211,53 +209,44 @@ reduceScal(const Device device, const StreamType stream_type, const ReductionTyp
{
cudaSetDevice(device->id);
const int3 start = (int3) {device->local_config.int_params[AC_nx_min],
device->local_config.int_params[AC_ny_min],
device->local_config.int_params[AC_nz_min]
};
const int3 start = (int3){device->local_config.int_params[AC_nx_min],
device->local_config.int_params[AC_ny_min],
device->local_config.int_params[AC_nz_min]};
const int3 end = (int3) {device->local_config.int_params[AC_nx_max],
device->local_config.int_params[AC_ny_max],
device->local_config.int_params[AC_nz_max]
};
const int3 end = (int3){device->local_config.int_params[AC_nx_max],
device->local_config.int_params[AC_ny_max],
device->local_config.int_params[AC_nz_max]};
*result = reduce_scal(device->streams[stream_type], rtype,
start, end, device->vba.in[vtxbuf_handle],
device->reduce_scratchpad, device->reduce_result);
*result = reduce_scal(device->streams[stream_type], rtype, start, end,
device->vba.in[vtxbuf_handle], device->reduce_scratchpad,
device->reduce_result);
return AC_SUCCESS;
}
AcResult
reduceVec(const Device device, const StreamType stream_type,
const ReductionType rtype,
const VertexBufferHandle vtxbuf0,
const VertexBufferHandle vtxbuf1,
const VertexBufferHandle vtxbuf2,
AcReal* result)
reduceVec(const Device device, const StreamType stream_type, const ReductionType rtype,
const VertexBufferHandle vtxbuf0, const VertexBufferHandle vtxbuf1,
const VertexBufferHandle vtxbuf2, AcReal* result)
{
cudaSetDevice(device->id);
const int3 start = (int3) {device->local_config.int_params[AC_nx_min],
device->local_config.int_params[AC_ny_min],
device->local_config.int_params[AC_nz_min]
};
const int3 start = (int3){device->local_config.int_params[AC_nx_min],
device->local_config.int_params[AC_ny_min],
device->local_config.int_params[AC_nz_min]};
const int3 end = (int3) {device->local_config.int_params[AC_nx_max],
device->local_config.int_params[AC_ny_max],
device->local_config.int_params[AC_nz_max]
};
const int3 end = (int3){device->local_config.int_params[AC_nx_max],
device->local_config.int_params[AC_ny_max],
device->local_config.int_params[AC_nz_max]};
*result = reduce_vec(device->streams[stream_type], rtype, start, end,
device->vba.in[vtxbuf0],
device->vba.in[vtxbuf1],
device->vba.in[vtxbuf2],
device->reduce_scratchpad, device->reduce_result);
*result = reduce_vec(device->streams[stream_type], rtype, start, end, device->vba.in[vtxbuf0],
device->vba.in[vtxbuf1], device->vba.in[vtxbuf2],
device->reduce_scratchpad, device->reduce_result);
return AC_SUCCESS;
}
AcResult
rkStep(const Device device, const StreamType stream_type, const int step_number,
const int3& start, const int3& end, const AcReal dt)
rkStep(const Device device, const StreamType stream_type, const int step_number, const int3& start,
const int3& end, const AcReal dt)
{
cudaSetDevice(device->id);
rk3_step_async(device->streams[stream_type], step_number, start, end, dt, &device->vba);
@@ -270,65 +259,62 @@ synchronize(const Device device, const StreamType stream_type)
cudaSetDevice(device->id);
if (stream_type == STREAM_ALL) {
cudaDeviceSynchronize();
} else {
}
else {
cudaStreamSynchronize(device->streams[stream_type]);
}
return AC_SUCCESS;
}
static AcResult
loadWithOffset(const Device device, const StreamType stream_type,
const AcReal* src, const size_t bytes, AcReal* dst)
loadWithOffset(const Device device, const StreamType stream_type, const AcReal* src,
const size_t bytes, AcReal* dst)
{
cudaSetDevice(device->id);
ERRCHK_CUDA(cudaMemcpyAsync(dst, src, bytes, cudaMemcpyHostToDevice,
device->streams[stream_type]));
ERRCHK_CUDA(
cudaMemcpyAsync(dst, src, bytes, cudaMemcpyHostToDevice, device->streams[stream_type]));
return AC_SUCCESS;
}
static AcResult
storeWithOffset(const Device device, const StreamType stream_type,
const AcReal* src, const size_t bytes, AcReal* dst)
storeWithOffset(const Device device, const StreamType stream_type, const AcReal* src,
const size_t bytes, AcReal* dst)
{
cudaSetDevice(device->id);
ERRCHK_CUDA(cudaMemcpyAsync(dst, src, bytes, cudaMemcpyDeviceToHost,
device->streams[stream_type]));
ERRCHK_CUDA(
cudaMemcpyAsync(dst, src, bytes, cudaMemcpyDeviceToHost, device->streams[stream_type]));
return AC_SUCCESS;
}
AcResult
copyMeshToDevice(const Device device, const StreamType stream_type,
const AcMesh& host_mesh, const int3& src, const int3& dst,
const int num_vertices)
copyMeshToDevice(const Device device, const StreamType stream_type, const AcMesh& host_mesh,
const int3& src, const int3& dst, const int num_vertices)
{
const size_t src_idx = AC_VTXBUF_IDX(src.x, src.y, src.z, host_mesh.info);
const size_t dst_idx = AC_VTXBUF_IDX(dst.x, dst.y, dst.z, device->local_config);
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
loadWithOffset(device, stream_type, &host_mesh.vertex_buffer[i][src_idx], num_vertices * sizeof(AcReal),
&device->vba.in[i][dst_idx]);
loadWithOffset(device, stream_type, &host_mesh.vertex_buffer[i][src_idx],
num_vertices * sizeof(AcReal), &device->vba.in[i][dst_idx]);
}
return AC_SUCCESS;
}
AcResult
copyMeshToHost(const Device device, const StreamType stream_type,
const int3& src, const int3& dst, const int num_vertices,
AcMesh* host_mesh)
copyMeshToHost(const Device device, const StreamType stream_type, const int3& src, const int3& dst,
const int num_vertices, AcMesh* host_mesh)
{
const size_t src_idx = AC_VTXBUF_IDX(src.x, src.y, src.z, device->local_config);
const size_t dst_idx = AC_VTXBUF_IDX(dst.x, dst.y, dst.z, host_mesh->info);
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
storeWithOffset(device, stream_type, &device->vba.in[i][src_idx],
num_vertices * sizeof(AcReal),
&host_mesh->vertex_buffer[i][dst_idx]);
num_vertices * sizeof(AcReal), &host_mesh->vertex_buffer[i][dst_idx]);
}
return AC_SUCCESS;
}
AcResult
copyMeshDeviceToDevice(const Device src_device, const StreamType stream_type,
const int3& src, Device dst_device, const int3& dst,
const int num_vertices)
copyMeshDeviceToDevice(const Device src_device, const StreamType stream_type, const int3& src,
Device dst_device, const int3& dst, const int num_vertices)
{
cudaSetDevice(src_device->id);
const size_t src_idx = AC_VTXBUF_IDX(src.x, src.y, src.z, src_device->local_config);
@@ -348,7 +334,7 @@ swapBuffers(const Device device)
{
cudaSetDevice(device->id);
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
AcReal* tmp = device->vba.in[i];
AcReal* tmp = device->vba.in[i];
device->vba.in[i] = device->vba.out[i];
device->vba.out[i] = tmp;
}
@@ -364,8 +350,8 @@ loadDeviceConstant(const Device device, const AcIntParam param, const int value)
// Therefore we have to obfuscate the code a bit and compute the offset address before
// invoking cudaMemcpyToSymbol.
const size_t offset = (size_t)&d_mesh_info.int_params[param] - (size_t)&d_mesh_info;
ERRCHK_CUDA_ALWAYS(cudaMemcpyToSymbol(d_mesh_info, &value, sizeof(value),
offset, cudaMemcpyHostToDevice));
ERRCHK_CUDA_ALWAYS(
cudaMemcpyToSymbol(d_mesh_info, &value, sizeof(value), offset, cudaMemcpyHostToDevice));
return AC_SUCCESS;
}
@@ -374,8 +360,8 @@ loadDeviceConstant(const Device device, const AcRealParam param, const AcReal va
{
cudaSetDevice(device->id);
const size_t offset = (size_t)&d_mesh_info.real_params[param] - (size_t)&d_mesh_info;
ERRCHK_CUDA_ALWAYS(cudaMemcpyToSymbol(d_mesh_info, &value, sizeof(value),
offset, cudaMemcpyHostToDevice));
ERRCHK_CUDA_ALWAYS(
cudaMemcpyToSymbol(d_mesh_info, &value, sizeof(value), offset, cudaMemcpyHostToDevice));
return AC_SUCCESS;
}
@@ -383,7 +369,7 @@ AcResult
loadGlobalGrid(const Device device, const Grid grid)
{
cudaSetDevice(device->id);
ERRCHK_CUDA_ALWAYS(cudaMemcpyToSymbol(globalGrid, &grid, sizeof(grid),
0, cudaMemcpyHostToDevice));
ERRCHK_CUDA_ALWAYS(
cudaMemcpyToSymbol(globalGrid, &grid, sizeof(grid), 0, cudaMemcpyHostToDevice));
return AC_SUCCESS;
}