Rewrote the Astaroth DSL compiler. More information and cleanup in the next commits.

This commit is contained in:
jpekkila
2019-10-07 15:43:20 +03:00
parent 6665d30983
commit d97f5b59ba
5 changed files with 389 additions and 91 deletions

View File

@@ -80,8 +80,8 @@ else_selection_statement: compound_statement
elif_selection_statement: ELIF expression else_selection_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = ELIF; }
;
iteration_statement: WHILE expression compound_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = WHILE; }
| FOR for_expression compound_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = FOR; }
iteration_statement: WHILE expression compound_statement { $$ = astnode_create(NODE_ITERATION_STATEMENT, $2, $3); $$->prefix = WHILE; }
| FOR for_expression compound_statement { $$ = astnode_create(NODE_ITERATION_STATEMENT, $2, $3); $$->prefix = FOR; }
;
for_expression: '(' for_init_param for_other_params ')' { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = '('; $$->postfix = ')'; }
@@ -124,8 +124,8 @@ declaration: type_declaration identifier
| type_declaration array_declaration { $$ = astnode_create(NODE_DECLARATION, $1, $2); }
;
array_declaration: identifier '[' ']' { $$ = astnode_create(NODE_UNKNOWN, $1, NULL); $$->infix = '['; $$->postfix = ']'; }
| identifier '[' expression ']' { $$ = astnode_create(NODE_UNKNOWN, $1, $3); $$->infix = '['; $$->postfix = ']'; }
array_declaration: identifier '[' ']' { $$ = astnode_create(NODE_ARRAY_DECLARATION, $1, NULL); $$->infix = '['; $$->postfix = ']'; }
| identifier '[' expression ']' { $$ = astnode_create(NODE_ARRAY_DECLARATION, $1, $3); $$->infix = '['; $$->postfix = ']'; }
;
type_declaration: type_specifier { $$ = astnode_create(NODE_TYPE_DECLARATION, $1, NULL); }

View File

@@ -20,8 +20,10 @@
FUNC(NODE_UNKNOWN), \
FUNC(NODE_DEFINITION), \
FUNC(NODE_GLOBAL_DEFINITION), \
FUNC(NODE_ITERATION_STATEMENT), \
FUNC(NODE_DECLARATION), \
FUNC(NODE_DECLARATION_LIST), \
FUNC(NODE_ARRAY_DECLARATION), \
FUNC(NODE_TYPE_DECLARATION), \
FUNC(NODE_TYPE_QUALIFIER), \
FUNC(NODE_TYPE_SPECIFIER), \

View File

@@ -153,6 +153,13 @@ add_symbol(const SymbolType type, const int tqualifier, const int tspecifier, co
{
assert(num_symbols[current_nest] < SYMBOL_TABLE_SIZE);
if (symboltable_lookup(id) && type != SYMBOLTYPE_FUNCTION) {
fprintf(stderr,
"Syntax error. Symbol '%s' is ambiguous, declared multiple times in the same scope"
" (shadowing).\n",
id);
}
symbol_table[num_symbols[current_nest]].type = type;
symbol_table[num_symbols[current_nest]].type_qualifier = tqualifier;
symbol_table[num_symbols[current_nest]].type_specifier = tspecifier;
@@ -222,73 +229,107 @@ print_symbol_table(void)
* Traversal state
* =============================================================================
*/
static bool inside_declaration = false;
/*
* =============================================================================
* AST traversal
* =============================================================================
*/
/*
static bool
introspect(const ASTNode* node, const NodeType type)
{
assert(node);
ASTNode* parent = node->parent;
while (parent) {
if (parent->type == type)
return true;
else
parent = parent->parent;
}
return false;
}
*/
static void
traverse(const ASTNode* node)
{
// Prefix translation
if (translate(node->prefix))
if (!inside_declaration && translate(node->prefix))
fprintf(CUDAHEADER, "%s", translate(node->prefix));
// Prefix logic
if (node->type == NODE_COMPOUND_STATEMENT) {
// if (node->type == NODE_FUNCTION_PARAMETER_DECLARATION ||
// node->type == NODE_ITERATION_STATEMENT) {
assert(current_nest < MAX_NESTS);
++current_nest;
num_symbols[current_nest] = num_symbols[current_nest - 1];
}
if (node->type == NODE_DECLARATION)
inside_declaration = true;
if (node->type == NODE_FUNCTION_PARAMETER_DECLARATION) {
// Boilerplates
const ASTNode* typedecl = node->parent->lhs->lhs;
const ASTNode* typequal = typedecl->lhs;
printf("typedecl %d\n", typedecl->type);
assert(typedecl->type == NODE_TYPE_DECLARATION);
if (typequal->type == NODE_TYPE_QUALIFIER) {
if (typequal->token == KERNEL) {
fprintf(CUDAHEADER, "GEN_KERNEL_PARAM_BOILERPLATE");
if (node->lhs != NULL) {
fprintf(
stderr,
"Syntax error: function parameters for Kernel functions not allowed!\n");
}
}
else if (typequal->token == PREPROCESSED) {
fprintf(CUDAHEADER, "GEN_PREPROCESSED_PARAM_BOILERPLATE, ");
}
}
}
if (node->type == NODE_COMPOUND_STATEMENT) {
if (node->parent->type == NODE_FUNCTION_DEFINITION) {
const Symbol* symbol = symboltable_lookup(node->parent->lhs->lhs->rhs->buffer);
if (symbol && symbol->type_qualifier == KERNEL) {
fprintf(CUDAHEADER, "GEN_KERNEL_BUILTIN_VARIABLES_BOILERPLATE();");
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == IN) {
fprintf(CUDAHEADER, "const %sData %s = READ(handle_%s);\n",
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier, symbol_table[i].identifier);
}
else if (symbol_table[i].type_qualifier == OUT) {
fprintf(CUDAHEADER, "%s %s = READ_OUT(handle_%s);",
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier, symbol_table[i].identifier);
}
}
}
}
}
// Traverse LHS
if (node->lhs)
traverse(node->lhs);
// Infix translation
if (translate(node->infix))
if (!inside_declaration && translate(node->infix))
fprintf(CUDAHEADER, "%s", translate(node->infix));
// Infix logic
// TODO
// If the node is a subscript expression and the expression list inside it is not empty
if (node->type == NODE_MULTIDIM_SUBSCRIPT_EXPRESSION && node->rhs)
fprintf(CUDAHEADER, "IDX(");
// Traverse RHS
if (node->rhs)
traverse(node->rhs);
// Postfix translation
if (translate(node->postfix))
fprintf(CUDAHEADER, "%s", translate(node->postfix));
// Translate existing symbols
const Symbol* symbol = symboltable_lookup(node->buffer);
if (symbol) {
// Uniforms
if (symbol->type_qualifier == UNIFORM) {
fprintf(CUDAHEADER, "DCONST(%s) ", symbol->identifier);
}
else {
// print_symbol2(symbol);
}
}
else {
/*
// Translate literals
if (translate(node->token))
printf("%s ", translate(node->token));
if (node->buffer) {
if (node->type == NODE_REAL_NUMBER) {
printf("%s(%s) ", translate(SCALAR), node->buffer); // Cast to correct precision
}
else {
printf("%s ", node->buffer);
}
}
*/
}
// Add new symbols to the symbol table
if (node->type == NODE_DECLARATION) {
int stype;
@@ -311,6 +352,7 @@ traverse(const ASTNode* node)
const char* identifier = node->rhs->type == NODE_IDENTIFIER ? node->rhs->buffer
: node->rhs->lhs->buffer;
add_symbol(stype, tqualifier, tspecifier, identifier);
printf("Added %s\n", identifier);
// Translate the new symbol
if (tqualifier == UNIFORM) {
@@ -328,22 +370,41 @@ traverse(const ASTNode* node)
fprintf(CUDAHEADER, "%s %s\npreprocessed_%s", //
translate(tqualifier), translate(tspecifier), identifier);
}
else if (stype == SYMBOLTYPE_FUNCTION) {
// Stencil assembly stage device function
fprintf(CUDAHEADER, "%s %s\n%s", //
translate(DEVICE), translate(tspecifier), identifier);
}
else if (stype == SYMBOLTYPE_FUNCTION_PARAMETER) {
tmp = tmp->parent;
assert(tmp->type = NODE_FUNCTION_DECLARATION);
const Symbol* parent_function = symboltable_lookup(tmp->lhs->rhs->buffer);
assert(parent_function);
if (tqualifier == IN || tqualifier == OUT) {
if (parent_function->type_qualifier == 0 ||
parent_function->type_qualifier == PREPROCESSED) {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
else {
if (tmp->lhs->lhs->lhs->token == DEVICE) {
fprintf(CUDAHEADER, "const %sData& %s", //
translate(tspecifier), identifier);
}
else {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
/*
if (parent_function->type_qualifier == 0 ||
parent_function->type_qualifier == PREPROCESSED) {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
else {
fprintf(CUDAHEADER, "const %sData& %s", //
translate(tspecifier), identifier);
}*/
}
else {
print_symbol2(&symbol_table[num_symbols[current_nest] - 1]);
}
}
else if (tqualifier == IN || tqualifier == OUT) { // Global in/out declarator
@@ -356,22 +417,183 @@ traverse(const ASTNode* node)
// Do a regular translation
print_symbol2(&symbol_table[num_symbols[current_nest] - 1]);
}
if (node->rhs->type == NODE_ARRAY_DECLARATION) {
// Traverse the expression once again, this time with
// "inside_declaration" flag off
inside_declaration = false;
fprintf(CUDAHEADER, "%s ", translate(node->rhs->infix));
if (node->rhs->rhs)
traverse(node->rhs->rhs);
fprintf(CUDAHEADER, "%s ", translate(node->rhs->postfix));
}
}
else {
// Translate existing symbols
const Symbol* symbol = symboltable_lookup(node->buffer);
if (symbol) {
// Uniforms
if (symbol->type_qualifier == UNIFORM) {
fprintf(CUDAHEADER, "DCONST(%s) ", symbol->identifier);
}
else if (node->parent->type != NODE_DECLARATION) {
// Regular translation
if (translate(node->token))
fprintf(CUDAHEADER, "%s ", translate(node->token));
if (node->buffer)
fprintf(CUDAHEADER, "%s ", node->buffer);
}
}
else if (!inside_declaration) {
// Literal translation
if (translate(node->token))
fprintf(CUDAHEADER, "%s ", translate(node->token));
if (node->buffer) {
if (node->type == NODE_REAL_NUMBER) {
fprintf(CUDAHEADER, "%s(%s) ", translate(SCALAR),
node->buffer); // Cast to correct precision
}
else {
fprintf(CUDAHEADER, "%s ", node->buffer);
}
}
}
}
// Postfix logic
// If the node is a subscript expression and the expression list inside it is not empty
if (node->type == NODE_MULTIDIM_SUBSCRIPT_EXPRESSION && node->rhs)
fprintf(CUDAHEADER, ")"); // Closing bracket of IDX()
if (node->type == NODE_COMPOUND_STATEMENT) {
// if (node->type == NODE_FUNCTION_DEFINITION || node->type == NODE_ITERATION_STATEMENT) {
assert(current_nest > 0);
--current_nest;
// Drop function parameters
while (symbol_table[num_symbols[current_nest] - 1].type == SYMBOLTYPE_FUNCTION_PARAMETER)
--num_symbols[current_nest];
// Drop temporaries declared with iteration statements
// TODO
printf("Dropped rest of the symbol table, from %lu to %lu\n", num_symbols[current_nest + 1],
num_symbols[current_nest]);
// Kernel writeback boilerplate
if (node->parent->type == NODE_FUNCTION_DEFINITION) {
const Symbol* symbol = symboltable_lookup(node->parent->lhs->lhs->rhs->buffer);
if (symbol && symbol->type_qualifier == KERNEL) {
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == OUT) {
fprintf(CUDAHEADER, "WRITE_OUT(handle_%s, %s);\n",
symbol_table[i].identifier, symbol_table[i].identifier);
}
}
}
}
}
if (node->type == NODE_DECLARATION)
inside_declaration = false;
// Postfix translation
if (!inside_declaration && translate(node->postfix))
fprintf(CUDAHEADER, "%s", translate(node->postfix));
}
static void
gen_preprocessed_forward_declarations(void)
{
}
static void
generate_preprocessed_structures(void)
{
// TODO
// Data structure
fprintf(CUDAHEADER, "\n");
// Read data to the data struct
fprintf(CUDAHEADER, "static __device__ __forceinline__ AcRealData\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int handle)\
{\n\
%sData data;\n",
translate(SCALAR));
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER,
"data.%s = preprocessed_%s(vertexIdx, globalVertexIdx, buf[handle]);\n",
symbol_table[i].identifier, symbol_table[i].identifier);
}
fprintf(CUDAHEADER, "return data;\n");
fprintf(CUDAHEADER, "}\n");
// Functions for accessing the data struct members
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "static __device__ __forceinline__ %s\
%s(const AcRealData& data)\
{\n\
return data.%s;\
}\n",
translate(symbol_table[i].type_specifier), symbol_table[i].identifier,
symbol_table[i].identifier);
}
// Syntactic sugar: Vector data struct
fprintf(CUDAHEADER, "static __device__ __forceinline__ AcReal3Data\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int3& handle)\
{\
AcReal3Data data;\
\
data.x = read_data(vertexIdx, globalVertexIdx, buf, handle.x);\
data.y = read_data(vertexIdx, globalVertexIdx, buf, handle.y);\
data.z = read_data(vertexIdx, globalVertexIdx, buf, handle.z);\
\
return data;\
}\
");
const size_t max_buflen = 65536;
char buffer[max_buflen];
rewind(CUDAHEADER);
const size_t buflen = fread(buffer, sizeof(char), max_buflen, CUDAHEADER);
fclose(CUDAHEADER);
CUDAHEADER = fopen("user_kernels.h", "w+");
fprintf(CUDAHEADER, "#pragma once\n");
fprintf(CUDAHEADER, "typedef struct {\n");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "%s %s;\n", translate(symbol_table[i].type_specifier),
symbol_table[i].identifier);
}
fprintf(CUDAHEADER, "} %sData;\n", translate(SCALAR));
fprintf(CUDAHEADER, "typedef struct {\
AcRealData x;\
AcRealData y;\
AcRealData z;\
} AcReal3Data;\n");
fprintf(CUDAHEADER, "static __device__ AcRealData\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int handle);\n");
fprintf(CUDAHEADER, "static __device__ AcReal3Data\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int3& handle);\n");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "static __device__ %s %s(const AcRealData& data);\n",
translate(symbol_table[i].type_specifier), symbol_table[i].identifier);
}
fwrite(buffer, sizeof(char), buflen, CUDAHEADER);
}
static void
@@ -440,7 +662,7 @@ static void
generate_library_hooks(void)
{
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == KERNEL && symbol_table[i].type_qualifier == UNIFORM) {
if (symbol_table[i].type_qualifier == KERNEL) {
fprintf(CUDAHEADER, "GEN_DEVICE_FUNC_HOOK(%s)\n", symbol_table[i].identifier);
}
}
@@ -464,6 +686,7 @@ main(int argc, char** argv)
traverse(root);
generate_header();
generate_preprocessed_structures();
generate_library_hooks();
print_symbol_table();