Compare commits

...

11 Commits

Author SHA1 Message Date
Carl Pearson
fc03675d61 add gaussian explosion code 2021-03-24 16:45:05 -06:00
jpekkila
5cdedc29dc Removed AVX dependency from the core library (astaroth_core). Astaroth utils (astaroth_utils) still requires it though because the model CPU solver uses vectorization. 2021-02-17 13:07:16 +02:00
jpekkila
f697b53b01 Auto-format of astaroth.h 2021-02-07 19:53:49 +02:00
Miikka Vaisala
2dbf703c59 Filed line integration and other smaller python tools. 2021-01-11 11:27:12 +08:00
jpekkila
7878811820 Merged in host-layer-renaming-2020-11-24 (pull request #17)
Renaming host layer functions and introducing acSetVertexBuffer

Approved-by: Miikka Väisälä <mvaisala@asiaa.sinica.edu.tw>
2020-11-25 03:37:40 +00:00
jpekkila
5df695b4b1 Merge branch 'master' into host-layer-renaming-2020-11-24 2020-11-24 22:00:30 +02:00
jpekkila
5a29543727 Merge branch 'alt_bcond_2020_09'
8503947 did not get merged for some reason, fixed with this.
2020-11-24 21:59:09 +02:00
jpekkila
b6bb53a75c Missed some renamings 2020-11-24 21:39:44 +02:00
jpekkila
bcacc357d3 Now all host functions start with acHost to avoid confusion on whether the function operates on host or device memory 2020-11-24 21:32:43 +02:00
jpekkila
095f863097 Added functions acSetVertexBuffer, acNodeSetVertexBuffer, and acDeviceSetVertexBuffer for setting device memory directly to some constant 2020-11-24 21:29:14 +02:00
jpekkila
850394760a Made strong scaling benchmark the default (was weak for some reason) 2020-11-23 12:19:16 +02:00
25 changed files with 933 additions and 148 deletions

View File

@@ -11,7 +11,7 @@ project(astaroth C CXX CUDA)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR})
## Project-wide compilation flags
set(COMMON_FLAGS "-mavx -DOMPI_SKIP_MPICXX -Wall -Wextra -Werror -Wdouble-promotion -Wfloat-conversion -Wshadow") # -DOMPI_SKIP_MPICXX is to force OpenMPI to use the C interface
set(COMMON_FLAGS "-DOMPI_SKIP_MPICXX -Wall -Wextra -Werror -Wdouble-promotion -Wfloat-conversion -Wshadow") # -DOMPI_SKIP_MPICXX is to force OpenMPI to use the C interface
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${COMMON_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${COMMON_FLAGS}")
set(CMAKE_C_STANDARD 11)

View File

@@ -606,7 +606,7 @@ generate_headers(void)
! -*-f90-*- (for emacs) vim:set filetype=fortran: (for vim)
! Utils (see astaroth_fortran.cc for definitions)
external acupdatebuiltinparams
external achostupdatebuiltinparams
external acgetdevicecount
! Device interface (see astaroth_fortran.cc for definitions)

View File

@@ -21,6 +21,7 @@
import numpy as np
import os
import pandas as pd
#Optional YT interface
try:
@@ -302,9 +303,116 @@ class Mesh:
self.jj = curl_of_curl(self.aa, self.minfo)
if trim:
self.bb = ( self.bb[0][3:-3, 3:-3, 3:-3],self.bb[1][3:-3, 3:-3, 3:-3],self.bb[2][3:-3, 3:-3, 3:-3])
self.xx_trim = self.xx[3:-3]
self.yy_trim = self.yy[3:-3]
self.zz_trim = self.zz[3:-3]
if get_jj:
self.jj = (self.jj[0][3:-3, 3:-3, 3:-3],self.jj[1][3:-3, 3:-3, 3:-3],self.jj[2][3:-3, 3:-3, 3:-3])
def Bfieldlines(self, footloc = 'default', vartype = 'B', maxstep = 1000):
dx = self.minfo.contents['AC_dsx']
dy = self.minfo.contents['AC_dsy']
dz = self.minfo.contents['AC_dsz']
if vartype == 'U':
#Trim to match
self.uu = (self.uu[0][3:-3, 3:-3, 3:-3],self.uu[1][3:-3, 3:-3, 3:-3],self.uu[2][3:-3, 3:-3, 3:-3])
def field_line_step(self, coord, ds):
#TODO assume that grid is at a cell centre
ix = np.argmin(np.abs(self.xx_trim - coord[0]))
iy = np.argmin(np.abs(self.yy_trim - coord[1]))
iz = np.argmin(np.abs(self.zz_trim - coord[2]))
if vartype == 'U':
Bcell_vec = np.array([self.uu[0][ix, iy, iz],
self.uu[1][ix, iy, iz],
self.uu[2][ix, iy, iz]])
else:
Bcell_vec = np.array([self.bb[0][ix, iy, iz],
self.bb[1][ix, iy, iz],
self.bb[2][ix, iy, iz]])
Bcell_abs = np.sqrt(Bcell_vec[0]**2.0 + Bcell_vec[1]**2.0 + Bcell_vec[2]**2.0)
coord_new = coord + (Bcell_vec/Bcell_abs)*ds
return coord_new
self.df_lines = pd.DataFrame()
ds = np.amin([self.minfo.contents['AC_dsx'],
self.minfo.contents['AC_dsy'],
self.minfo.contents['AC_dsz']])
ii = 0
if footloc == 'middlez':
ixtot = 6
iytot = 6
iztot = 1
xfoots = np.linspace(self.xx_trim.min(), self.xx_trim.max(), num = ixtot)
yfoots = np.linspace(self.yy_trim.min(), self.yy_trim.max(), num = iytot)
zfoots = np.array([(self.zz_trim.max() - self.zz_trim.min())/2.0 + self.zz_trim.min()])
elif footloc == 'cube':
ixtot = 5
iytot = 5
iztot = 5
xfoots = np.linspace(self.xx_trim.min()+3.0*dx, self.xx_trim.max()-3.0*dx, num = ixtot)
yfoots = np.linspace(self.yy_trim.min()+3.0*dy, self.yy_trim.max()-3.0*dy, num = iytot)
zfoots = np.linspace(self.zz_trim.min()+3.0*dz, self.zz_trim.max()-3.0*dz, num = iztot)
else:
ixtot = 6
iytot = 6
iztot = 1
xfoots = np.linspace(self.xx_trim.min(), self.xx_trim.max(), num = ixtot)
yfoots = np.linspace(self.yy_trim.min(), self.yy_trim.max(), num = iytot)
zfoots = np.array([self.zz_trim.min()])
imax = ixtot * iytot * iztot
for zfoot in zfoots:
for yfoot in yfoots:
for xfoot in xfoots:
print(ii, "/", imax-1)
integrate = 1
counter = 0
dstot = 0.0
coord = np.array([xfoot, yfoot, zfoot])
self.df_lines = self.df_lines.append({"line_num":ii,
"dstot":dstot,
"coordx":coord[0],
"coordy":coord[1],
"coordz":coord[2]},
ignore_index=True)
while integrate:
coord = field_line_step(self, coord, ds)
dstot += ds
self.df_lines = self.df_lines.append({"line_num":ii,
"dstot":dstot,
"coordx":coord[0],
"coordy":coord[1],
"coordz":coord[2]},
ignore_index=True)
counter += 1
if counter >= maxstep:
integrate = 0
if ((coord[0] > self.xx_trim.max()) or
(coord[1] > self.yy_trim.max()) or
(coord[2] > self.zz_trim.max()) or
(coord[0] < self.xx_trim.min()) or
(coord[1] < self.yy_trim.min()) or
(coord[2] < self.zz_trim.min())):
#print("out of bounds")
integrate = 0
if (np.isnan(coord[0]) or
np.isnan(coord[1]) or
np.isnan(coord[2])):
integrate = 0
ii += 1
#print(self.df_lines)
def get_jj(self, trim=False):
self.jj = curl_of_curl(self.aa, minfo, trim=False)
if trim:

View File

@@ -142,4 +142,103 @@ def plot_3(mesh, input_grid, title = '', fname = 'default', bitmap=False,
print('Saved %s_%s.png' % (fname, mesh.framenum))
plt.close(fig)
def volume_render(mesh, val1 = {"variable": None, "min": None, "max":None, "opacity":1.0}):
if val1["variable"] == "btot":
plt.figure()
bb_tot = np.sqrt(mesh.bb[0]**2.0 + mesh.bb[1]**2.0 + mesh.bb[2]**2.0)
array = bb_tot
varname = "btot"
meshxx = mesh.xx[3:-3]
meshyy = mesh.yy[3:-3]
meshzz = mesh.zz[3:-3]
if val1["variable"] == "utot":
plt.figure()
uu_tot = np.sqrt(mesh.uu[0]**2.0 + mesh.uu[1]**2.0 + mesh.uu[2]**2.0)
array = uu_tot
varname = "utot"
meshxx = mesh.xx
meshyy = mesh.yy
meshzz = mesh.zz
if val1["variable"] == "rho":
plt.figure()
array = np.exp(mesh.lnrho)
varname = "rho"
meshxx = mesh.xx
meshyy = mesh.yy
meshzz = mesh.zz
if val1["variable"] == "aa":
plt.figure()
aa_tot = np.sqrt(mesh.aa[0]**2.0 + mesh.aa[1]**2.0 + mesh.aa[2]**2.0)
array = aa_tot
varname = "aa"
meshxx = mesh.xx
meshyy = mesh.yy
meshzz = mesh.zz
#Histogram plot to find value ranges.
hist, bedges = np.histogram(array, bins=mesh.xx.size)
plt.plot(bedges[:-1], hist)
plt.yscale('log')
if val1["min"] != None or val1["max"] != None:
plt.plot([val1["min"],val1["min"]], [1,hist.max()], label=varname+" min")
plt.plot([val1["max"],val1["max"]], [1,hist.max()], label=varname+" max")
plt.legend()
plt.savefig('volrend_hist_%s_%s.png' % (varname, mesh.framenum))
plt.close()
if val1["min"] != None or val1["max"] != None:
#print(np.where(bb_tot < val1["min"]))
array[np.where(array < val1["min"])] = 0.0
array[np.where(array > val1["max"])] = 0.0
array[np.where(array > 0.0)] = val1["opacity"]
#plt.figure()
#plt.plot(bb_tot[:,64,64])
mapyz = array.sum(axis=0)
mapxz = array.sum(axis=1)
mapxy = array.sum(axis=2)
yy_yz, zz_yz = np.meshgrid(meshyy, meshzz, indexing='ij')
xx_xz, zz_xz = np.meshgrid(meshxx, meshzz, indexing='ij')
xx_xy, yy_xy = np.meshgrid(meshxx, meshyy, indexing='ij')
fig, ax = plt.subplots()
#plt.imshow(mapyz, vmin=0.0, vmax=1.0)
plt.pcolormesh(yy_yz, zz_yz, mapyz, vmin=0.0, vmax=1.0, shading='auto')
ax.set_aspect('equal')
ax.set_title(varname)
ax.set_xlabel('y')
ax.set_ylabel('z')
plt.savefig('volrend_%s_%s_%s.png' % (varname, "yz", mesh.framenum))
plt.close()
fig, ax = plt.subplots()
#plt.imshow(mapxz, vmin=0.0, vmax=1.0)
plt.pcolormesh(xx_xz, zz_xz, mapxz, vmin=0.0, vmax=1.0, shading='auto')
ax.set_aspect('equal')
ax.set_title(varname)
ax.set_xlabel('x')
ax.set_ylabel('z')
plt.savefig('volrend_%s_%s_%s.png' % (varname, "xz", mesh.framenum))
plt.close()
fig, ax = plt.subplots()
#plt.imshow(mapxy, vmin=0.0, vmax=1.0)
plt.pcolormesh(xx_xy, yy_xy, mapxy, vmin=0.0, vmax=1.0, shading='auto')
ax.set_aspect('equal')
ax.set_title(varname)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.savefig('volrend_%s_%s_%s.png' % (varname, "xy", mesh.framenum))
plt.close()
#plt.show()

View File

@@ -25,6 +25,16 @@ import sys
import os
import pandas as pd
from mpl_toolkits.mplot3d import Axes3D
#Optional YT interface
try:
import yt
yt_present = True
except ImportError:
yt_present = False
##mesh = ad.read.Mesh(500, fdir="/tiara/home/mvaisala/astaroth-code/astaroth_2.0/build/")
##
##print(np.shape(mesh.uu))
@@ -122,28 +132,110 @@ if "single" in sys.argv:
print( mesh.uu[2][100, 101, 00], "periodic")
if 'xline' in sys.argv:
mesh = ad.read.Mesh(0, fdir=meshdir)
plt.figure()
plt.plot(mesh.uu[0][100, 50, :] , label="z")
plt.plot(mesh.uu[0][100, :, 100], label="x")
plt.plot(mesh.uu[0][:, 50, 100] , label="y")
plt.legend()
mesh_file_numbers = ad.read.parse_directory(meshdir)
print(mesh_file_numbers)
maxfiles = np.amax(mesh_file_numbers)
plt.figure()
plt.plot(mesh.uu[0][197, 50, :] , label="z edge")
for i in mesh_file_numbers[-3:]:
mesh = ad.read.Mesh(i, fdir=meshdir)
mesh.Bfield(trim=True)
plt.figure()
plt.plot(mesh.uu[1][100, 50, :] , label="z")
plt.plot(mesh.uu[1][100, :, 100], label="x")
plt.plot(mesh.uu[1][:, 50, 100] , label="y")
plt.legend()
xhalf = int(mesh.uu[0].shape[0]/2.0)
yhalf = int(mesh.uu[0].shape[1]/2.0)
zhalf = int(mesh.uu[0].shape[2]/2.0)
print(xhalf, yhalf, zhalf)
plt.figure()
plt.plot(mesh.uu[0][xhalf, yhalf, :], label="z")
plt.plot(mesh.uu[0][xhalf, :, zhalf], label="y")
plt.plot(mesh.uu[0][ :, yhalf, zhalf], label="x")
plt.title("UUX")
plt.legend()
#plt.figure()
#plt.plot(mesh.uu[0][197, 50, :] , label="z edge")
plt.figure()
plt.plot(mesh.uu[1][xhalf, yhalf, :], label="z")
plt.plot(mesh.uu[1][xhalf, :, zhalf], label="y")
plt.plot(mesh.uu[1][ :, yhalf, zhalf], label="x")
plt.title("UUY")
plt.legend()
plt.figure()
plt.plot(mesh.uu[2][xhalf, yhalf, :], label="z")
plt.plot(mesh.uu[2][xhalf, :, zhalf], label="y")
plt.plot(mesh.uu[2][ :, yhalf, zhalf], label="x")
plt.legend()
plt.title("UUZ")
plt.figure()
plt.plot(mesh.bb[0][xhalf, yhalf, :], label="z")
plt.plot(mesh.bb[0][xhalf, :, zhalf], label="y")
plt.plot(mesh.bb[0][ :, yhalf, zhalf], label="x")
plt.title("BBX")
plt.legend()
plt.figure()
plt.plot(mesh.bb[1][xhalf, yhalf, :], label="z")
plt.plot(mesh.bb[1][xhalf, :, zhalf], label="y")
plt.plot(mesh.bb[1][ :, yhalf, zhalf], label="x")
plt.title("BBY")
plt.legend()
plt.figure()
plt.plot(mesh.bb[2][xhalf, yhalf, :], label="z")
plt.plot(mesh.bb[2][xhalf, :, zhalf], label="y")
plt.plot(mesh.bb[2][ :, yhalf, zhalf], label="x")
plt.legend()
plt.title("BBZ")
plt.figure()
plt.plot(mesh.aa[0][xhalf, yhalf, :], label="z")
plt.plot(mesh.aa[0][xhalf, :, zhalf], label="y")
plt.plot(mesh.aa[0][ :, yhalf, zhalf], label="x")
plt.title("AX")
plt.legend()
plt.figure()
plt.plot(mesh.aa[1][xhalf, yhalf, :], label="z")
plt.plot(mesh.aa[1][xhalf, :, zhalf], label="y")
plt.plot(mesh.aa[1][ :, yhalf, zhalf], label="x")
plt.title("AY")
plt.legend()
plt.figure()
plt.plot(mesh.aa[2][xhalf, yhalf, :], label="z")
plt.plot(mesh.aa[2][xhalf, :, zhalf], label="y")
plt.plot(mesh.aa[2][ :, yhalf, zhalf], label="x")
plt.legend()
plt.title("AZ")
uu_tot = np.sqrt(mesh.uu[0]**2.0 + mesh.uu[1]**2.0 + mesh.uu[2]**2.0)
bb_tot = np.sqrt(mesh.bb[0]**2.0 + mesh.bb[1]**2.0 + mesh.bb[2]**2.0)
plt.figure()
plt.plot(uu_tot[xhalf, yhalf, :], label="z")
plt.plot(uu_tot[xhalf, :, zhalf], label="y")
plt.plot(uu_tot[ :, yhalf, zhalf], label="x")
plt.legend()
plt.title("UTOT")
plt.figure()
plt.plot(bb_tot[xhalf, yhalf, :], label="z")
plt.plot(bb_tot[xhalf, :, zhalf], label="y")
plt.plot(bb_tot[ :, yhalf, zhalf], label="x")
plt.legend()
plt.title("BTOT")
plt.figure()
plt.plot(np.exp(mesh.lnrho[xhalf, yhalf, :]), label="z")
plt.plot(np.exp(mesh.lnrho[xhalf, :, zhalf]), label="y")
plt.plot(np.exp(mesh.lnrho[ :, yhalf, zhalf]), label="x")
plt.legend()
plt.title("RHO")
plt.figure()
plt.plot(mesh.uu[2][100, 50, :] , label="z")
plt.plot(mesh.uu[2][100, :, 100], label="x")
plt.plot(mesh.uu[2][:, 50, 100] , label="y")
plt.legend()
plt.show()
if 'check' in sys.argv:
mesh = ad.read.Mesh(0, fdir=meshdir)
@@ -180,22 +272,43 @@ if '1d' in sys.argv:
plt.legend()
plt.show()
if 'csv' in sys.argv:
filenum = sys.argv[1]
mesh = ad.read.Mesh(filenum, fdir=meshdir)
mesh.Bfield()
mesh.export_csv()
if 'raw' in sys.argv:
filenum = sys.argv[1]
mesh = ad.read.Mesh(filenum, fdir=meshdir)
mesh.Bfield()
mesh.export_raw()
if 'findnan' in sys.argv:
filenum = sys.argv[1]
mesh = ad.read.Mesh(filenum, fdir=meshdir)
print("nan uu", np.where(np.isnan(mesh.uu)))
print("nan aa", np.where(np.isnan(mesh.aa)))
print("nan lnrho", np.where(np.isnan(mesh.lnrho)))
print("inf uu", np.where(np.isinf(mesh.uu)))
print("inf aa", np.where(np.isinf(mesh.aa)))
print("inf lnrho", np.where(np.isinf(mesh.lnrho)))
if 'sl' in sys.argv:
#maxfiles = 200002
#stride = 10000
maxfiles = 500000001
stride = 1
for i in range(0, maxfiles, stride):
#mesh = ad.read.Mesh(i, fdir=meshdir)
mesh_file_numbers = ad.read.parse_directory(meshdir)
print(mesh_file_numbers)
maxfiles = np.amax(mesh_file_numbers)
for i in mesh_file_numbers:
mesh = ad.read.Mesh(i, fdir=meshdir)
print(" %i / %i" % (i, maxfiles))
if mesh.ok:
uu_tot = np.sqrt(mesh.uu[0]**2.0 + mesh.uu[1]**2.0 + mesh.uu[2]**2.0)
aa_tot = np.sqrt(mesh.aa[0]**2.0 + mesh.aa[1]**2.0 + mesh.aa[2]**2.0)
mesh.Bfield()
mesh.Bfield(trim=True)
bb_tot = np.sqrt(mesh.bb[0]**2.0 + mesh.bb[1]**2.0 + mesh.bb[2]**2.0)
if 'sym' in sys.argv:
@@ -248,6 +361,133 @@ if 'sl' in sys.argv:
vis.slices.plot_3(mesh, mesh.bb[1], title = r'$B_y$', bitmap = True, fname = 'bby', trimghost=3)#, bfieldlines=True)
vis.slices.plot_3(mesh, mesh.bb[2], title = r'$B_z$', bitmap = True, fname = 'bbz', trimghost=3)#, bfieldlines=True)
if 'yt' in sys.argv:
mesh.yt_conversion()
from mpl_toolkits.axes_grid1 import AxesGrid
coords = ['x', 'y','z']
for coord in coords:
fields = ['density', 'uux', 'uuy', 'uuz']
fig = plt.figure()
grid = AxesGrid(fig, (0.075,0.075,0.85,0.85),
nrows_ncols = (2, 2),
axes_pad = 1.0,
label_mode = "1",
share_all = True,
cbar_location="right",
cbar_mode="each",
cbar_size="3%",
cbar_pad="0%")
p = yt.SlicePlot(mesh.ytdata, coord, fields)
p.set_log('uux', False)
p.set_log('uuy', False)
p.set_log('uuz', False)
for i, field in enumerate(fields):
plot = p.plots[field]
plot.figure = fig
plot.axes = grid[i].axes
plot.cax = grid.cbar_axes[i]
p._setup_plots()
plt.savefig('yt_rho_uu_%s_%s.png' % (coord, mesh.framenum))
plt.close(fig=fig)
###
fields = ['density', 'bbx', 'bby', 'bbz']
fig = plt.figure()
grid = AxesGrid(fig, (0.075,0.075,0.85,0.85),
nrows_ncols = (2, 2),
axes_pad = 1.0,
label_mode = "1",
share_all = True,
cbar_location="right",
cbar_mode="each",
cbar_size="3%",
cbar_pad="0%")
p = yt.SlicePlot(mesh.ytdata, coord, fields)
p.set_log('bbx', False)
p.set_log('bby', False)
p.set_log('bbz', False)
for i, field in enumerate(fields):
plot = p.plots[field]
plot.figure = fig
plot.axes = grid[i].axes
plot.cax = grid.cbar_axes[i]
p._setup_plots()
plt.savefig('yt_rho_bb_%s_%s.png' % (coord, mesh.framenum))
plt.close(fig=fig)
elif 'csvall' in sys.argv:
mesh.export_csv()
elif 'rawall' in sys.argv:
mesh.export_raw()
if "vol" in sys.argv:
print("VOLUME RENDERING")
mesh_file_numbers = ad.read.parse_directory(meshdir)
print(mesh_file_numbers)
maxfiles = np.amax(mesh_file_numbers)
for i in mesh_file_numbers:
mesh = ad.read.Mesh(i, fdir=meshdir)
mesh.Bfield(trim=True)
print(" %i / %i" % (i, maxfiles))
if mesh.ok:
vis.slices.volume_render(mesh, val1 = {"variable": "btot", "min":0.5, "max":2.0, "opacity":0.05})
vis.slices.volume_render(mesh, val1 = {"variable": "utot", "min":0.5, "max":2.0, "opacity":0.05})
vis.slices.volume_render(mesh, val1 = {"variable": "rho", "min":10.0, "max":300.0, "opacity":0.05})
vis.slices.volume_render(mesh, val1 = {"variable": "aa", "min":0.1, "max":0.25, "opacity":0.05})
if (("bline" in sys.argv) or ("uline" in sys.argv)):
print("Field line computation")
mesh_file_numbers = ad.read.parse_directory(meshdir)
print(mesh_file_numbers)
maxfiles = np.amax(mesh_file_numbers)
for i in mesh_file_numbers:
mesh = ad.read.Mesh(i, fdir=meshdir)
mesh.Bfield(trim=True)
print(" %i / %i" % (i, maxfiles))
if mesh.ok:
if "uline" in sys.argv:
mesh.Bfieldlines(footloc = 'cube', vartype='U', maxstep = 200)
else:
mesh.Bfieldlines(footloc = 'default')
print(mesh.df_lines)
fig = plt.figure(figsize=(5.0,5.0))
ax = fig.gca(projection='3d')
for line_num in range(int(mesh.df_lines['line_num'].max()+1)):
df_myline = mesh.df_lines.loc[mesh.df_lines['line_num'] == line_num]
print(df_myline)
my_xscale = [mesh.xx_trim.min(), mesh.xx_trim.max()]
my_yscale = [mesh.yy_trim.min(), mesh.yy_trim.max()]
my_zscale = [mesh.zz_trim.min(), mesh.zz_trim.max()]
ax.plot(df_myline["coordx"], df_myline["coordy"], df_myline["coordz"], color="red")
ax.set_xlim3d(my_xscale)
ax.set_ylim3d(my_yscale)
ax.set_zlim3d(my_zscale)
if "uline" in sys.argv:
filename = 'Ugeometry_%s.png' % (mesh.framenum)
else:
filename = 'Bgeometry_%s.png' % (mesh.framenum)
plt.savefig(filename)
plt.close()
#plt.show()
if 'ts' in sys.argv:
ts = ad.read.TimeSeries(fdir=meshdir)

View File

@@ -5,9 +5,9 @@
* "Compile-time" params
* =============================================================================
*/
AC_nx = 128
AC_ny = 128
AC_nz = 128
AC_nx = 64
AC_ny = 64
AC_nz = 64
AC_dsx = 0.04908738521
AC_dsy = 0.04908738521

View File

@@ -46,13 +46,16 @@ typedef struct {
} AcMatrix;
#include "user_defines.h" // Autogenerated defines from the DSL
//#include "../src/core/kernels/kernels.h"
typedef enum { AC_SUCCESS = 0, AC_FAILURE = 1 } AcResult;
// Neming the associated number of the boundary condition types
typedef enum { AC_BOUNDCOND_PERIODIC = 0,
AC_BOUNDCOND_SYMMETRIC = 1,
AC_BOUNDCOND_ANTISYMMETRIC = 2 } AcBoundcond;
// Naming the associated number of the boundary condition types
typedef enum {
AC_BOUNDCOND_PERIODIC = 0,
AC_BOUNDCOND_SYMMETRIC = 1,
AC_BOUNDCOND_ANTISYMMETRIC = 2
} AcBoundcond;
#define AC_GEN_ID(X) X,
typedef enum {
@@ -225,6 +228,9 @@ AcResult acLoadDeviceConstant(const AcRealParam param, const AcReal value);
/** Loads an AcMesh to the devices visible to the caller */
AcResult acLoad(const AcMesh host_mesh);
/** Sets the whole mesh to some value */
AcResult acSetVertexBuffer(const VertexBufferHandle handle, const AcReal value);
/** Stores the AcMesh distributed among the devices visible to the caller back to the host*/
AcResult acStore(AcMesh* host_mesh);
@@ -252,10 +258,11 @@ AcReal acReduceScal(const ReductionType rtype, const VertexBufferHandle vtxbuf_h
AcReal acReduceVec(const ReductionType rtype, const VertexBufferHandle a,
const VertexBufferHandle b, const VertexBufferHandle c);
/** Does a reduction for an operation which requires a vector and a scalar with vertex buffers
/** Does a reduction for an operation which requires a vector and a scalar with vertex buffers
* * where the vector components are (a, b, c) and scalr is (d) */
AcReal acReduceVecScal(const ReductionType rtype, const VertexBufferHandle a,
const VertexBufferHandle b, const VertexBufferHandle c, const VertexBufferHandle d);
const VertexBufferHandle b, const VertexBufferHandle c,
const VertexBufferHandle d);
/** Stores a subset of the mesh stored across the devices visible to the caller back to host memory.
*/
@@ -322,7 +329,7 @@ AcResult acGridIntegrate(const Stream stream, const AcReal dt);
/** */
/* MV: Commented out for a while, but save for the future when standalone_MPI
works with periodic boundary conditions.
works with periodic boundary conditions.
AcResult
acGridIntegrateNonperiodic(const Stream stream, const AcReal dt)
@@ -432,6 +439,10 @@ AcResult acNodeLoadVertexBuffer(const Node node, const Stream stream, const AcMe
/** */
AcResult acNodeLoadMesh(const Node node, const Stream stream, const AcMesh host_mesh);
/** */
AcResult acNodeSetVertexBuffer(const Node node, const Stream stream,
const VertexBufferHandle handle, const AcReal value);
/** Deprecated ? */
AcResult acNodeStoreVertexBufferWithOffset(const Node node, const Stream stream,
const VertexBufferHandle vtxbuf_handle, const int3 src,
@@ -467,8 +478,9 @@ AcResult acNodePeriodicBoundcondStep(const Node node, const Stream stream,
AcResult acNodePeriodicBoundconds(const Node node, const Stream stream);
/** */
AcResult acNodeGeneralBoundcondStep(const Node node, const Stream stream,
const VertexBufferHandle vtxbuf_handle, const AcMeshInfo config);
AcResult acNodeGeneralBoundcondStep(const Node node, const Stream stream,
const VertexBufferHandle vtxbuf_handle,
const AcMeshInfo config);
/** */
AcResult acNodeGeneralBoundconds(const Node node, const Stream stream, const AcMeshInfo config);
@@ -483,8 +495,8 @@ AcResult acNodeReduceVec(const Node node, const Stream stream_type, const Reduct
/** */
AcResult acNodeReduceVecScal(const Node node, const Stream stream_type, const ReductionType rtype,
const VertexBufferHandle vtxbuf0, const VertexBufferHandle vtxbuf1,
const VertexBufferHandle vtxbuf2, const VertexBufferHandle vtxbuf3, AcReal* result);
const VertexBufferHandle vtxbuf2, const VertexBufferHandle vtxbuf3,
AcReal* result);
/*
* =============================================================================
@@ -554,6 +566,10 @@ AcResult acDeviceLoadVertexBuffer(const Device device, const Stream stream, cons
/** */
AcResult acDeviceLoadMesh(const Device device, const Stream stream, const AcMesh host_mesh);
/** */
AcResult acDeviceSetVertexBuffer(const Device device, const Stream stream,
const VertexBufferHandle handle, const AcReal value);
/** */
AcResult acDeviceStoreVertexBufferWithOffset(const Device device, const Stream stream,
const VertexBufferHandle vtxbuf_handle, const int3 src,
@@ -610,7 +626,6 @@ AcResult acDeviceGeneralBoundcondStep(const Device device, const Stream stream,
AcResult acDeviceGeneralBoundconds(const Device device, const Stream stream, const int3 start,
const int3 end, const AcMeshInfo config, const int3 bindex);
/** */
AcResult acDeviceReduceScal(const Device device, const Stream stream, const ReductionType rtype,
const VertexBufferHandle vtxbuf_handle, AcReal* result);
@@ -619,9 +634,10 @@ AcResult acDeviceReduceVec(const Device device, const Stream stream_type, const
const VertexBufferHandle vtxbuf0, const VertexBufferHandle vtxbuf1,
const VertexBufferHandle vtxbuf2, AcReal* result);
/** */
AcResult acDeviceReduceVecScal(const Device device, const Stream stream_type, const ReductionType rtype,
const VertexBufferHandle vtxbuf0, const VertexBufferHandle vtxbuf1,
const VertexBufferHandle vtxbuf2, const VertexBufferHandle vtxbuf3, AcReal* result);
AcResult acDeviceReduceVecScal(const Device device, const Stream stream_type,
const ReductionType rtype, const VertexBufferHandle vtxbuf0,
const VertexBufferHandle vtxbuf1, const VertexBufferHandle vtxbuf2,
const VertexBufferHandle vtxbuf3, AcReal* result);
/** */
AcResult acDeviceRunMPITest(void);
@@ -631,16 +647,16 @@ AcResult acDeviceRunMPITest(void);
* =============================================================================
*/
/** Updates the built-in parameters based on nx, ny and nz */
AcResult acUpdateBuiltinParams(AcMeshInfo* config);
AcResult acHostUpdateBuiltinParams(AcMeshInfo* config);
/** Creates a mesh stored in host memory */
AcResult acMeshCreate(const AcMeshInfo mesh_info, AcMesh* mesh);
AcResult acHostMeshCreate(const AcMeshInfo mesh_info, AcMesh* mesh);
/** Randomizes a host mesh */
AcResult acMeshRandomize(AcMesh* mesh);
AcResult acHostMeshRandomize(AcMesh* mesh);
/** Destroys a mesh stored in host memory */
AcResult acMeshDestroy(AcMesh* mesh);
AcResult acHostMeshDestroy(AcMesh* mesh);
#ifdef __cplusplus
} // extern "C"

View File

@@ -45,25 +45,25 @@ typedef struct {
AcResult acLoadConfig(const char* config_path, AcMeshInfo* config);
/** */
AcResult acVertexBufferSet(const VertexBufferHandle handle, const AcReal value, AcMesh* mesh);
AcResult acHostVertexBufferSet(const VertexBufferHandle handle, const AcReal value, AcMesh* mesh);
/** */
AcResult acMeshSet(const AcReal value, AcMesh* mesh);
AcResult acHostMeshSet(const AcReal value, AcMesh* mesh);
/** */
AcResult acMeshApplyPeriodicBounds(AcMesh* mesh);
AcResult acHostMeshApplyPeriodicBounds(AcMesh* mesh);
/** */
AcResult acMeshClear(AcMesh* mesh);
AcResult acHostMeshClear(AcMesh* mesh);
/** */
AcResult acModelIntegrateStep(AcMesh mesh, const AcReal dt);
AcResult acHostIntegrateStep(AcMesh mesh, const AcReal dt);
/** */
AcReal acModelReduceScal(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a);
AcReal acHostReduceScal(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a);
/** */
AcReal acModelReduceVec(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a,
AcReal acHostReduceVec(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a,
const VertexBufferHandle b, const VertexBufferHandle c);
Error acGetError(const AcReal model, const AcReal candidate);

View File

@@ -98,7 +98,7 @@ main(int argc, char** argv)
info.int_params[AC_nx] = nx;
info.int_params[AC_ny] = ny;
info.int_params[AC_nz] = nz;
acUpdateBuiltinParams(&info);
acHostUpdateBuiltinParams(&info);
printf("Benchmark mesh dimensions: (%d, %d, %d)\n", nx, ny, nz);
}
else {
@@ -107,7 +107,7 @@ main(int argc, char** argv)
}
}
const TestType test = TEST_WEAK_SCALING;
const TestType test = TEST_STRONG_SCALING;
if (test == TEST_WEAK_SCALING) {
uint3_64 decomp = decompose(nprocs);
info.int_params[AC_nx] *= decomp.x;
@@ -118,10 +118,10 @@ main(int argc, char** argv)
/*
AcMesh model, candidate;
if (pid == 0) {
acMeshCreate(info, &model);
acMeshCreate(info, &candidate);
acMeshRandomize(&model);
acMeshRandomize(&candidate);
acHostMeshCreate(info, &model);
acHostMeshCreate(info, &candidate);
acHostMeshRandomize(&model);
acHostMeshRandomize(&candidate);
}*/
// GPU alloc & compute
@@ -130,8 +130,8 @@ main(int argc, char** argv)
/*
AcMesh model;
acMeshCreate(info, &model);
acMeshRandomize(&model);
acHostMeshCreate(info, &model);
acHostMeshRandomize(&model);
acGridLoadMesh(STREAM_DEFAULT, model);
*/
@@ -145,12 +145,12 @@ main(int argc, char** argv)
// Verify
if (pid == 0) {
acModelIntegrateStep(model, FLT_EPSILON);
acMeshApplyPeriodicBounds(&model);
acHostIntegrateStep(model, FLT_EPSILON);
acHostMeshApplyPeriodicBounds(&model);
AcResult retval = acVerifyMesh(model, candidate);
acMeshDestroy(&model);
acMeshDestroy(&candidate);
acHostMeshDestroy(&model);
acHostMeshDestroy(&candidate);
if (retval != AC_SUCCESS) {
fprintf(stderr, "Failures found, benchmark invalid. Skipping\n");

View File

@@ -31,12 +31,12 @@ main(void)
// Alloc
AcMesh model, candidate;
acMeshCreate(info, &model);
acMeshCreate(info, &candidate);
acHostMeshCreate(info, &model);
acHostMeshCreate(info, &candidate);
// Init
acMeshRandomize(&model);
acMeshApplyPeriodicBounds(&model);
acHostMeshRandomize(&model);
acHostMeshApplyPeriodicBounds(&model);
// Verify that the mesh was loaded and stored correctly
acInit(info);
@@ -55,8 +55,8 @@ main(void)
// Destroy
acQuit();
acMeshDestroy(&model);
acMeshDestroy(&candidate);
acHostMeshDestroy(&model);
acHostMeshDestroy(&candidate);
puts("cpptest complete.");
return EXIT_SUCCESS;

View File

@@ -30,12 +30,12 @@ main(void)
// Alloc
AcMesh model, candidate;
acMeshCreate(info, &model);
acMeshCreate(info, &candidate);
acHostMeshCreate(info, &model);
acHostMeshCreate(info, &candidate);
// Init
acMeshRandomize(&model);
acMeshApplyPeriodicBounds(&model);
acHostMeshRandomize(&model);
acHostMeshApplyPeriodicBounds(&model);
// Verify that the mesh was loaded and stored correctly
acInit(info);
@@ -46,6 +46,7 @@ main(void)
// Attempt to integrate and check max and min
printf("Integrating... ");
acIntegrate(FLT_EPSILON);
printf("Done.\nVTXBUF ranges after one integration step:\n");
for (size_t i = 0; i < NUM_VTXBUF_HANDLES; ++i)
printf("\t%-15s... [%.3g, %.3g]\n", vtxbuf_names[i], //
@@ -54,8 +55,8 @@ main(void)
// Destroy
acQuit();
acMeshDestroy(&model);
acMeshDestroy(&candidate);
acHostMeshDestroy(&model);
acHostMeshDestroy(&candidate);
puts("ctest complete.");
return EXIT_SUCCESS;

View File

@@ -14,7 +14,7 @@ program pc
info%int_params(AC_nx + 1) = 128
info%int_params(AC_ny + 1) = 128
info%int_params(AC_nz + 1) = 128
call acupdatebuiltinparams(info)
call achostupdatebuiltinparams(info)
call acdevicecreate(0, info, device)
call acdeviceprintinfo(device)

View File

@@ -23,6 +23,271 @@
#include "astaroth_utils.h"
#include "errchk.h"
#include <cmath>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;
void
gaussian_radial_explosion(AcMesh* mesh)
{
AcReal* uu_x = mesh->vertex_buffer[VTXBUF_UUX];
AcReal* uu_y = mesh->vertex_buffer[VTXBUF_UUY];
AcReal* uu_z = mesh->vertex_buffer[VTXBUF_UUZ];
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int nx_min = mesh->info.int_params[AC_nx_min];
const int nx_max = mesh->info.int_params[AC_nx_max];
const int ny_min = mesh->info.int_params[AC_nx_min];
const int ny_max = mesh->info.int_params[AC_nx_max];
const int nz_min = mesh->info.int_params[AC_nx_min];
const int nz_max = mesh->info.int_params[AC_nx_max];
const AcReal DX = mesh->info.real_params[AC_dsx];
const AcReal DY = mesh->info.real_params[AC_dsy];
const AcReal DZ = mesh->info.real_params[AC_dsz];
const AcReal xorig = 0.00001;
const AcReal yorig = 0.00001;
const AcReal zorig = 0.00001;
const AcReal INIT_LOC_UU_X = 0.01;
const AcReal INIT_LOC_UU_Y = 32 * DY;
const AcReal INIT_LOC_UU_Z = 32 * DZ;
const AcReal AMPL_UU = 1;
const AcReal UU_SHELL_R = 0.8;
const AcReal WIDTH_UU = 0.2;
// Outward explosion with gaussian initial velocity profile.
int idx;
AcReal xx, yy, zz, rr2, rr, theta = 0.0, phi = 0.0;
AcReal uu_radial;
// real theta_old = 0.0;
for (int k = nz_min; k < nz_max; k++) {
for (int j = ny_min; j < ny_max; j++) {
for (int i = nx_min; i < nx_max; i++) {
// Calculate the value of velocity in a particular radius.
idx = i + j * mx + k * mx * my;
// Determine the coordinates
xx = DX * (i - nx_min) - xorig;
xx = xx - INIT_LOC_UU_X;
yy = DY * (j - ny_min) - yorig;
yy = yy - INIT_LOC_UU_Y;
zz = DZ * (k - nz_min) - zorig;
zz = zz - INIT_LOC_UU_Z;
rr2 = pow(xx, 2.0) + pow(yy, 2.0) + pow(zz, 2.0);
rr = sqrt(rr2);
// printf("[%d %d %d] %e %e %e\n", i, j, k, DX, DY, DZ);
// Origin is different!
AcReal xx_abs, yy_abs, zz_abs;
if (rr > 0.0) {
// theta range [0, PI]
if (zz >= 0.0) {
theta = acos(min(1.0, zz / rr));
if (theta > M_PI / 2.0 || theta < 0.0) {
printf("Explosion THETA WRONG: zz = %.3f, rr = %.3f, theta = %.3e/PI, "
"M_PI = %.3e\n",
zz, rr, theta / M_PI, M_PI);
}
}
else {
zz_abs = -zz; // Needs a posite value for acos
theta = M_PI - acos(zz_abs / rr);
if (theta < M_PI / 2.0 || theta > 2 * M_PI) {
printf("Explosion THETA WRONG: zz = %.3f, rr = %.3f, theta = %.3e/PI, "
"M_PI = %.3e\n",
zz, rr, theta / M_PI, M_PI);
}
}
// phi range [0, 2*PI]i
if (xx != 0.0) {
if (xx < 0.0 && yy >= 0.0) {
//-+
xx_abs = -xx; // Needs a posite value for atan
phi = M_PI - atan(yy / xx_abs);
if (phi < (M_PI / 2.0) || phi > M_PI) {
printf("Explosion PHI WRONG -+: xx = %.3f, yy = %.3f, phi = "
"%.3e/PI, M_PI = %.3e\n",
xx, yy, phi / M_PI, M_PI);
}
}
else if (xx > 0.0 && yy < 0.0) {
//+-
yy_abs = -yy;
phi = 2.0 * M_PI - atan(yy_abs / xx);
if (phi < (3.0 * M_PI) / 2.0 || phi > (2.0 * M_PI + 1e-6)) {
printf("Explosion PHI WRONG +-: xx = %.3f, yy = %.3f, phi = "
"%.3e/PI, M_PI = %.3e\n",
xx, yy, phi / M_PI, M_PI);
}
}
else if (xx < 0.0 && yy < 0.0) {
//--
yy_abs = -yy;
xx_abs = -xx;
phi = M_PI + atan(yy_abs / xx_abs);
if (phi < M_PI || phi > ((3.0 * M_PI) / 2.0 + 1e-6)) {
printf("Explosion PHI WRONG --: xx = %.3f, yy = %.3f, xx_abs = "
"%.3f, yy_abs = %.3f, phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
xx, yy, xx_abs, yy_abs, phi, (3.0 * M_PI) / 2.0);
}
}
else {
//++
phi = atan(yy / xx);
if (phi < 0 || phi > M_PI / 2.0) {
printf("Explosion PHI WRONG --: xx = %.3f, yy = %.3f, phi = %.3e, "
"(3.0*M_PI)/2.0 = %.3e\n",
xx, yy, phi, (3.0 * M_PI) / 2.0);
}
}
}
else { // To avoid div by zero with atan
if (yy > 0.0) {
phi = M_PI / 2.0;
}
else if (yy < 0.0) {
phi = (3.0 * M_PI) / 2.0;
}
else {
phi = 0.0;
}
}
// Set zero for explicit safekeeping
if (xx == 0.0 && yy == 0.0) {
phi = 0.0;
}
// Gaussian velocity
// uu_radial = AMPL_UU*exp( -rr2 / (2.0*pow(WIDTH_UU, 2.0)) );
// New distribution, where that gaussion wave is not in the exact centre
// coordinates uu_radial = AMPL_UU*exp( -pow((rr - 4.0*WIDTH_UU),2.0) /
// (2.0*pow(WIDTH_UU, 2.0)) ); //TODO: Parametrize the peak location.
uu_radial = AMPL_UU *
exp(-pow((rr - UU_SHELL_R), 2.0) / (2.0 * pow(WIDTH_UU, 2.0)));
}
else {
uu_radial = 0.0; // TODO: There will be a discontinuity in the origin... Should
// the shape of the distribution be different?
}
// if (rr > 0.2 && rr < 1.0) {
// printf("%e\n", uu_radial);
// }
// Determine the carthesian velocity components and lnrho
uu_x[idx] = uu_radial * sin(theta) * cos(phi);
uu_y[idx] = uu_radial * sin(theta) * sin(phi);
uu_z[idx] = uu_radial * cos(theta);
// Temporary diagnosticv output (TODO: Remove after not needed)
// if (theta > theta_old) {
// if (theta > M_PI || theta < 0.0 || phi < 0.0 || phi > 2*M_PI) {
/* printf("Explosion: xx = %.3f, yy = %.3f, zz = %.3f, rr = %.3f, phi = %.3e/PI,
theta = %.3e/PI\n, M_PI = %.3e", xx, yy, zz, rr, phi/M_PI, theta/M_PI, M_PI);
printf(" uu_radial = %.3e, uu_x[%i] = %.3e, uu_y[%i] = %.3e, uu_z[%i]
= %.3e \n", uu_radial, idx, uu_x[idx], idx, uu_y[idx], idx, uu_z[idx]); theta_old
= theta;
*/
}
}
}
}
static AcReal
randf(void)
{
return (AcReal)rand() / (AcReal)RAND_MAX;
}
AcResult
meshRadial(AcMesh* mesh)
{
const int n = acVertexBufferSize(mesh->info);
// lnrho to constant
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[VTXBUF_LNRHO][i] = 0.5;
// A to random
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[VTXBUF_AX][i] = randf();
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[VTXBUF_AY][i] = randf();
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[VTXBUF_AZ][i] = randf();
// entropy random
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[VTXBUF_ENTROPY][i] = randf();
// velocity is radial explosion
gaussian_radial_explosion(mesh);
return AC_SUCCESS;
}
void
dumpMesh(AcMesh* mesh, const std::string& path)
{
const char delim[] = ",";
FILE* outf = fopen(path.c_str(), "w");
if (!outf) {
std::cerr << "unable to open \"" << path << "\" for writing\n";
exit(1);
}
// column headers
fprintf(outf, "Z%sY%sX", delim, delim);
for (int64_t qi = 0; qi < NUM_VTXBUF_HANDLES; ++qi) {
std::string colName = "data" + std::to_string(qi);
fprintf(outf, "%s%s", delim, colName.c_str());
}
fprintf(outf, "\n");
// is this right?
int3 origin = mesh->info.int3_params[AC_multigpu_offset];
origin.x += 1;
origin.y += 1;
origin.z += 1;
const int nz = mesh->info.int_params[AC_nz];
const int ny = mesh->info.int_params[AC_ny];
const int nx = mesh->info.int_params[AC_nx];
// const int mz = mesh->info.int_params[AC_mz];
const int my = mesh->info.int_params[AC_my];
const int mx = mesh->info.int_params[AC_mx];
// rows
for (int lz = 0; lz < nz; ++lz) {
for (int ly = 0; ly < ny; ++ly) {
for (int lx = 0; lx < nx; ++lx) {
const int3 pos{origin.x + lx, origin.y + ly, origin.z + lz};
fprintf(outf, "%d%s%d%s%d", pos.z, delim, pos.y, delim, pos.x);
for (int64_t qi = 0; qi < NUM_VTXBUF_HANDLES; ++qi) {
AcReal val = mesh->vertex_buffer[qi][lz * (my * mx) + ly * mx + lx];
if (8 == sizeof(AcReal)) {
fprintf(outf, "%s%.17f", delim, val);
}
else if (4 == sizeof(AcReal)) {
fprintf(outf, "%s%.9f", delim, val);
}
}
fprintf(outf, "\n");
}
}
}
fclose(outf);
}
#if AC_MPI_ENABLED
#include <mpi.h>
@@ -47,10 +312,18 @@ main(void)
AcMesh model, candidate;
if (pid == 0) {
acMeshCreate(info, &model);
acMeshCreate(info, &candidate);
acMeshRandomize(&model);
acMeshRandomize(&candidate);
acHostMeshCreate(info, &model);
acHostMeshCreate(info, &candidate);
meshRadial(&model);
meshRadial(&candidate);
}
{
std::stringstream ss;
ss << "candidate_init_";
ss << pid << ".txt";
std::cerr << "dump to " << ss.str() << "\n";
dumpMesh(&candidate, ss.str());
}
// GPU alloc & compute
@@ -61,10 +334,10 @@ main(void)
acGridPeriodicBoundconds(STREAM_DEFAULT);
acGridStoreMesh(STREAM_DEFAULT, &candidate);
if (pid == 0) {
acMeshApplyPeriodicBounds(&model);
acHostMeshApplyPeriodicBounds(&model);
const AcResult res = acVerifyMesh("Boundconds", model, candidate);
ERRCHK_ALWAYS(res == AC_SUCCESS);
acMeshRandomize(&model);
meshRadial(&model);
}
// Integration
@@ -72,12 +345,21 @@ main(void)
acGridIntegrate(STREAM_DEFAULT, FLT_EPSILON);
acGridPeriodicBoundconds(STREAM_DEFAULT);
acGridStoreMesh(STREAM_DEFAULT, &candidate);
{
std::stringstream ss;
ss << "candidate_final_";
ss << pid << ".txt";
std::cerr << "dump to " << ss.str() << "\n";
dumpMesh(&candidate, ss.str());
}
if (pid == 0) {
acModelIntegrateStep(model, FLT_EPSILON);
acMeshApplyPeriodicBounds(&model);
acHostIntegrateStep(model, FLT_EPSILON);
acHostMeshApplyPeriodicBounds(&model);
const AcResult res = acVerifyMesh("Integration", model, candidate);
ERRCHK_ALWAYS(res == AC_SUCCESS);
acMeshRandomize(&model);
meshRadial(&model);
}
// Scalar reductions
@@ -93,10 +375,10 @@ main(void)
AcReal candval;
acGridReduceScal(STREAM_DEFAULT, (ReductionType)i, v0, &candval);
if (pid == 0) {
const AcReal modelval = acModelReduceScal(model, (ReductionType)i, v0);
const AcReal modelval = acHostReduceScal(model, (ReductionType)i, v0);
Error error = acGetError(modelval, candval);
error.maximum_magnitude = acModelReduceScal(model, RTYPE_MAX, v0);
error.minimum_magnitude = acModelReduceScal(model, RTYPE_MIN, v0);
error.maximum_magnitude = acHostReduceScal(model, RTYPE_MAX, v0);
error.minimum_magnitude = acHostReduceScal(model, RTYPE_MIN, v0);
ERRCHK_ALWAYS(acEvalError(rtype_names[i], error));
}
}
@@ -114,17 +396,17 @@ main(void)
AcReal candval;
acGridReduceVec(STREAM_DEFAULT, (ReductionType)i, v0, v1, v2, &candval);
if (pid == 0) {
const AcReal modelval = acModelReduceVec(model, (ReductionType)i, v0, v1, v2);
const AcReal modelval = acHostReduceVec(model, (ReductionType)i, v0, v1, v2);
Error error = acGetError(modelval, candval);
error.maximum_magnitude = acModelReduceVec(model, RTYPE_MAX, v0, v1, v2);
error.minimum_magnitude = acModelReduceVec(model, RTYPE_MIN, v0, v1, v1);
error.maximum_magnitude = acHostReduceVec(model, RTYPE_MAX, v0, v1, v2);
error.minimum_magnitude = acHostReduceVec(model, RTYPE_MIN, v0, v1, v1);
ERRCHK_ALWAYS(acEvalError(rtype_names[i], error));
}
}
if (pid == 0) {
acMeshDestroy(&model);
acMeshDestroy(&candidate);
acHostMeshDestroy(&model);
acHostMeshDestroy(&candidate);
}
acGridQuit();

View File

@@ -576,7 +576,7 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
switch (init_type) {
case INIT_TYPE_RANDOM: {
acMeshClear(mesh);
acHostMeshClear(mesh);
const AcReal range = AcReal(0.01);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
for (int i = 0; i < n; ++i)
@@ -585,14 +585,14 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
break;
}
case INIT_TYPE_GAUSSIAN_RADIAL_EXPL:
acMeshClear(mesh);
acVertexBufferSet(VTXBUF_LNRHO, mesh->info.real_params[AC_ampl_lnrho], mesh);
acHostMeshClear(mesh);
acHostVertexBufferSet(VTXBUF_LNRHO, mesh->info.real_params[AC_ampl_lnrho], mesh);
// acmesh_init_to(INIT_TYPE_RANDOM, mesh);
gaussian_radial_explosion(mesh);
break;
case INIT_TYPE_XWAVE:
acMeshClear(mesh);
acHostMeshClear(mesh);
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
@@ -605,24 +605,24 @@ acmesh_init_to(const InitType& init_type, AcMesh* mesh)
}
break;
case INIT_TYPE_SIMPLE_CORE:
acMeshClear(mesh);
acHostMeshClear(mesh);
simple_uniform_core(mesh);
break;
case INIT_TYPE_VEDGE:
acMeshClear(mesh);
acHostMeshClear(mesh);
inflow_vedge_freefall(mesh);
break;
case INIT_TYPE_VEDGEX:
acMeshClear(mesh);
acHostMeshClear(mesh);
inflow_freefall_x(mesh);
break;
case INIT_TYPE_RAYLEIGH_TAYLOR:
acMeshClear(mesh);
acHostMeshClear(mesh);
inflow_freefall_x(mesh);
lnrho_step(mesh);
break;
case INIT_TYPE_ABC_FLOW: {
acMeshClear(mesh);
acHostMeshClear(mesh);
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
for (int k = nz_min; k < nz_max; k++) {
for (int j = ny_min; j < ny_max; j++) {

View File

@@ -199,9 +199,9 @@ print_diagnostics_host(const AcMesh mesh, const int step, const AcReal dt, const
const int max_name_width = 16;
// Calculate rms, min and max from the velocity vector field
buf_max = acModelReduceVec(mesh, RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_min = acModelReduceVec(mesh, RTYPE_MIN, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_rms = acModelReduceVec(mesh, RTYPE_RMS, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_max = acHostReduceVec(mesh, RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_min = acHostReduceVec(mesh, RTYPE_MIN, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_rms = acHostReduceVec(mesh, RTYPE_RMS, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
// MV: The ordering in the earlier version was wrong in terms of variable
// MV: name and its diagnostics.
@@ -213,9 +213,9 @@ print_diagnostics_host(const AcMesh mesh, const int step, const AcReal dt, const
// Calculate rms, min and max from the variables as scalars
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
buf_max = acModelReduceScal(mesh, RTYPE_MAX, VertexBufferHandle(i));
buf_min = acModelReduceScal(mesh, RTYPE_MIN, VertexBufferHandle(i));
buf_rms = acModelReduceScal(mesh, RTYPE_RMS, VertexBufferHandle(i));
buf_max = acHostReduceScal(mesh, RTYPE_MAX, VertexBufferHandle(i));
buf_min = acHostReduceScal(mesh, RTYPE_MIN, VertexBufferHandle(i));
buf_rms = acHostReduceScal(mesh, RTYPE_RMS, VertexBufferHandle(i));
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, vtxbuf_names[i],
double(buf_min), double(buf_rms), double(buf_max));
@@ -330,7 +330,7 @@ main(int argc, char** argv)
AcMesh mesh;
if (pid == 0) {
acMeshCreate(info, &mesh);
acHostMeshCreate(info, &mesh);
acmesh_init_to(INIT_TYPE_GAUSSIAN_RADIAL_EXPL, &mesh);
}
acGridInit(info);
@@ -362,7 +362,7 @@ main(int argc, char** argv)
}
}
if (pid == 0)
acMeshDestroy(&mesh);
acHostMeshDestroy(&mesh);
acGridQuit();
/////////////// Simple example END
@@ -376,7 +376,7 @@ main(int argc, char** argv)
if (argc == 3 && (!strcmp(argv[1], "-c") || !strcmp(argv[1], "--config"))) {
acLoadConfig(argv[2], &info);
load_config(argv[2], &info);
acUpdateBuiltinParams(&info);
acHostUpdateBuiltinParams(&info);
}
else {
printf("Usage: ./ac_run\n");
@@ -388,7 +388,7 @@ main(int argc, char** argv)
else {
acLoadConfig(AC_DEFAULT_CONFIG, &info);
load_config(AC_DEFAULT_CONFIG, &info);
acUpdateBuiltinParams(&info);
acHostUpdateBuiltinParams(&info);
}
const int start_step = info.int_params[AC_start_step];
@@ -406,7 +406,7 @@ main(int argc, char** argv)
AcMesh mesh;
///////////////////////////////// PROC 0 BLOCK START ///////////////////////////////////////////
if (pid == 0) {
acMeshCreate(info, &mesh);
acHostMeshCreate(info, &mesh);
// TODO: This need to be possible to define in astaroth.conf
acmesh_init_to(INIT_TYPE_GAUSSIAN_RADIAL_EXPL, &mesh);
// acmesh_init_to(INIT_TYPE_SIMPLE_CORE, mesh); //Initial condition for a collapse test
@@ -445,7 +445,7 @@ main(int argc, char** argv)
#endif
}
acMeshApplyPeriodicBounds(&mesh);
acHostMeshApplyPeriodicBounds(&mesh);
if (start_step == 0) {
save_mesh(mesh, 0, t_step);
}
@@ -564,7 +564,7 @@ main(int argc, char** argv)
acGridQuit();
if (pid == 0)
acMeshDestroy(&mesh);
acHostMeshDestroy(&mesh);
fclose(diag_file);
#endif

View File

@@ -74,6 +74,12 @@ acLoad(const AcMesh host_mesh)
return acNodeLoadMesh(nodes[0], STREAM_DEFAULT, host_mesh);
}
AcResult
acSetVertexBuffer(const VertexBufferHandle handle, const AcReal value)
{
return acNodeSetVertexBuffer(nodes[0], STREAM_DEFAULT, handle, value);
}
AcResult
acStore(AcMesh* host_mesh)
{
@@ -182,7 +188,7 @@ acGetNode(void)
}
AcResult
acUpdateBuiltinParams(AcMeshInfo* config)
acHostUpdateBuiltinParams(AcMeshInfo* config)
{
config->int_params[AC_mx] = config->int_params[AC_nx] + STENCIL_ORDER;
///////////// PAD TEST
@@ -221,7 +227,7 @@ acUpdateBuiltinParams(AcMeshInfo* config)
}
AcResult
acMeshCreate(const AcMeshInfo info, AcMesh* mesh)
acHostMeshCreate(const AcMeshInfo info, AcMesh* mesh)
{
mesh->info = info;
@@ -241,7 +247,7 @@ randf(void)
}
AcResult
acMeshRandomize(AcMesh* mesh)
acHostMeshRandomize(AcMesh* mesh)
{
const int n = acVertexBufferSize(mesh->info);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
@@ -252,7 +258,7 @@ acMeshRandomize(AcMesh* mesh)
}
AcResult
acMeshDestroy(AcMesh* mesh)
acHostMeshDestroy(AcMesh* mesh)
{
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
free(mesh->vertex_buffer[w]);

View File

@@ -7,9 +7,9 @@
* Utils
*/
void
acupdatebuiltinparams_(AcMeshInfo* info)
achostupdatebuiltinparams_(AcMeshInfo* info)
{
acUpdateBuiltinParams(info);
acHostUpdateBuiltinParams(info);
}
void

View File

@@ -8,7 +8,7 @@ extern "C" {
/**
* Utils
*/
void acupdatebuiltinparams_(AcMeshInfo* info);
void achostupdatebuiltinparams_(AcMeshInfo* info);
void acgetdevicecount_(int* count);

View File

@@ -294,6 +294,26 @@ acDeviceLoadMesh(const Device device, const Stream stream, const AcMesh host_mes
return AC_SUCCESS;
}
AcResult
acDeviceSetVertexBuffer(const Device device, const Stream stream, const VertexBufferHandle handle, const AcReal value)
{
acDeviceSynchronizeStream(device, stream);
const size_t count = acVertexBufferSize(device->local_config);
AcReal* data = (AcReal*) malloc(sizeof(AcReal) * count);
ERRCHK_ALWAYS(data);
for (size_t i = 0; i < count; ++i)
data[i] = value;
// Set both in and out for safety (not strictly needed)
ERRCHK_CUDA_ALWAYS(cudaMemcpyAsync(device->vba.in[handle], data, sizeof(data[0]) * count, cudaMemcpyHostToDevice, device->streams[stream]));
ERRCHK_CUDA_ALWAYS(cudaMemcpyAsync(device->vba.out[handle], data, sizeof(data[0]) * count, cudaMemcpyHostToDevice, device->streams[stream]));
free(data);
return AC_SUCCESS;
}
AcResult
acDeviceStoreVertexBufferWithOffset(const Device device, const Stream stream,
const VertexBufferHandle vtxbuf_handle, const int3 src,
@@ -1269,10 +1289,10 @@ acGridRandomize(void)
ERRCHK(grid.initialized);
AcMesh host;
acMeshCreate(grid.submesh.info, &host);
acMeshRandomize(&host);
acHostMeshCreate(grid.submesh.info, &host);
acHostMeshRandomize(&host);
acDeviceLoadMesh(grid.device, STREAM_DEFAULT, host);
acMeshDestroy(&host);
acHostMeshDestroy(&host);
return AC_SUCCESS;
}
@@ -1320,7 +1340,7 @@ acGridInit(const AcMeshInfo info)
};
submesh_info.int3_params[AC_multigpu_offset] = pid3d *
(int3){submesh_nx, submesh_ny, submesh_nz};
acUpdateBuiltinParams(&submesh_info);
acHostUpdateBuiltinParams(&submesh_info);
// GPU alloc
int devices_per_node = -1;
@@ -1331,7 +1351,7 @@ acGridInit(const AcMeshInfo info)
// CPU alloc
AcMesh submesh;
acMeshCreate(submesh_info, &submesh);
acHostMeshCreate(submesh_info, &submesh);
// Setup the global grid structure
grid.device = device;
@@ -1380,7 +1400,7 @@ acGridQuit(void)
grid.initialized = false;
grid.decomposition = (uint3_64){0, 0, 0};
acMeshDestroy(&grid.submesh);
acHostMeshDestroy(&grid.submesh);
acDeviceDestroy(grid.device);
acGridSynchronizeStream(STREAM_ALL);

View File

@@ -536,6 +536,18 @@ acNodeLoadMesh(const Node node, const Stream stream, const AcMesh host_mesh)
return AC_SUCCESS;
}
AcResult
acNodeSetVertexBuffer(const Node node, const Stream stream, const VertexBufferHandle handle, const AcReal value)
{
acNodeSynchronizeStream(node, stream);
for (int i = 0; i < node->num_devices; ++i)
acDeviceSetVertexBuffer(node->devices[i], stream, handle, value);
acNodeSynchronizeStream(node, stream); // For safety
return AC_SUCCESS;
}
AcResult
acNodeStoreVertexBufferWithOffset(const Node node, const Stream stream,
const VertexBufferHandle vtxbuf_handle, const int3 src,

View File

@@ -1,3 +1,4 @@
## Astaroth Utils
add_library(astaroth_utils STATIC config_loader.c memory.c verification.c modelsolver.c modelreduce.c)
add_dependencies(astaroth_utils dsl_headers)
target_compile_options(astaroth_utils PRIVATE "-mavx")

View File

@@ -89,7 +89,7 @@ acLoadConfig(const char* config_path, AcMeshInfo* config)
memset(config, (uint8_t)0xFF, sizeof(*config));
parse_config(config_path, config);
acUpdateBuiltinParams(config);
acHostUpdateBuiltinParams(config);
#if AC_VERBOSE
printf("###############################################################\n");
printf("Config dimensions loaded:\n");

View File

@@ -21,7 +21,7 @@
#include "errchk.h"
AcResult
acVertexBufferSet(const VertexBufferHandle handle, const AcReal value, AcMesh* mesh)
acHostVertexBufferSet(const VertexBufferHandle handle, const AcReal value, AcMesh* mesh)
{
const int n = acVertexBufferSize(mesh->info);
for (int i = 0; i < n; ++i)
@@ -30,16 +30,16 @@ acVertexBufferSet(const VertexBufferHandle handle, const AcReal value, AcMesh* m
return AC_SUCCESS;
}
AcResult
acMeshSet(const AcReal value, AcMesh* mesh)
acHostMeshSet(const AcReal value, AcMesh* mesh)
{
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
acVertexBufferSet(w, value, mesh);
acHostVertexBufferSet(w, value, mesh);
return AC_SUCCESS;
}
AcResult
acMeshApplyPeriodicBounds(AcMesh* mesh)
acHostMeshApplyPeriodicBounds(AcMesh* mesh)
{
const AcMeshInfo info = mesh->info;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
@@ -105,7 +105,7 @@ acMeshApplyPeriodicBounds(AcMesh* mesh)
}
AcResult
acMeshClear(AcMesh* mesh)
acHostMeshClear(AcMesh* mesh)
{
return acMeshSet(0, mesh);
return acHostMeshSet(0, mesh);
}

View File

@@ -74,7 +74,7 @@ exp_squared_vec(const AcReal a, const AcReal b, const AcReal c) { return exp_squ
// clang-format on
AcReal
acModelReduceScal(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a)
acHostReduceScal(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a)
{
ReduceInitialScalFunc reduce_initial;
ReduceFunc reduce;
@@ -139,7 +139,7 @@ acModelReduceScal(const AcMesh mesh, const ReductionType rtype, const VertexBuff
}
AcReal
acModelReduceVec(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a,
acHostReduceVec(const AcMesh mesh, const ReductionType rtype, const VertexBufferHandle a,
const VertexBufferHandle b, const VertexBufferHandle c)
{
// AcReal (*reduce_initial)(AcReal, AcReal, AcReal);

View File

@@ -30,7 +30,7 @@
#include <stdbool.h>
#include "errchk.h"
#include "memory.h" // acMeshCreate, acMeshDestroy, acMeshApplyPeriodicBounds
#include "memory.h" // acHostMeshCreate, acHostMeshDestroy, acHostMeshApplyPeriodicBounds
// Standalone flags
#define LDENSITY (1)
@@ -985,7 +985,7 @@ checkConfiguration(const AcMeshInfo info)
}
AcResult
acModelIntegrateStep(AcMesh mesh, const AcReal dt)
acHostIntegrateStep(AcMesh mesh, const AcReal dt)
{
mesh_info = &(mesh.info);
@@ -998,7 +998,7 @@ acModelIntegrateStep(AcMesh mesh, const AcReal dt)
checkConfiguration(*mesh_info);
AcMesh intermediate_mesh;
acMeshCreate(mesh.info, &intermediate_mesh);
acHostMeshCreate(mesh.info, &intermediate_mesh);
const int nx_min = getInt(AC_nx_min);
const int nx_max = getInt(AC_nx_max);
@@ -1012,7 +1012,7 @@ acModelIntegrateStep(AcMesh mesh, const AcReal dt)
for (int step_number = 0; step_number < 3; ++step_number) {
// Boundconds
acMeshApplyPeriodicBounds(&mesh);
acHostMeshApplyPeriodicBounds(&mesh);
// Alpha step
// #pragma omp parallel for
@@ -1035,7 +1035,7 @@ acModelIntegrateStep(AcMesh mesh, const AcReal dt)
}
}
acMeshDestroy(&intermediate_mesh);
acHostMeshDestroy(&intermediate_mesh);
mesh_info = NULL;
return AC_SUCCESS;
}