Files
astaroth/samples/standalone/model/model_boundconds.cc
2020-08-19 13:35:49 +03:00

483 lines
22 KiB
C++

/*
Copyright (C) 2014-2020, Johannes Pekkila, Miikka Vaisala.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) amy later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT Amy WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file
* \brief Brief info.
*
* Detailed info.
*
*/
#include "model_boundconds.h"
#include "errchk.h"
void
boundconds(const AcMeshInfo& mesh_info, ModelMesh* mesh)
{
#pragma omp parallel for
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
const int3 start = (int3){0, 0, 0};
const int3 end = (int3){mesh_info.int_params[AC_mx], mesh_info.int_params[AC_my],
mesh_info.int_params[AC_mz]};
const int nx = mesh_info.int_params[AC_nx];
const int ny = mesh_info.int_params[AC_ny];
const int nz = mesh_info.int_params[AC_nz];
const int nx_min = mesh_info.int_params[AC_nx_min];
const int ny_min = mesh_info.int_params[AC_ny_min];
const int nz_min = mesh_info.int_params[AC_nz_min];
// The old kxt was inclusive, but our mx_max is exclusive
const int nx_max = mesh_info.int_params[AC_nx_max];
const int ny_max = mesh_info.int_params[AC_ny_max];
const int nz_max = mesh_info.int_params[AC_nz_max];
for (int k_dst = start.z; k_dst < end.z; ++k_dst) {
for (int j_dst = start.y; j_dst < end.y; ++j_dst) {
for (int i_dst = start.x; i_dst < end.x; ++i_dst) {
// If destination index is inside the computational domain, return since
// the boundary conditions are only applied to the ghost zones
if (i_dst >= nx_min && i_dst < nx_max && j_dst >= ny_min && j_dst < ny_max &&
k_dst >= nz_min && k_dst < nz_max)
continue;
// Find the source index
// Map to nx, ny, nz coordinates
int i_src = i_dst - nx_min;
int j_src = j_dst - ny_min;
int k_src = k_dst - nz_min;
// Translate (s.t. the index is always positive)
i_src += nx;
j_src += ny;
k_src += nz;
// Wrap
i_src %= nx;
j_src %= ny;
k_src %= nz;
// Map to mx, my, mz coordinates
i_src += nx_min;
j_src += ny_min;
k_src += nz_min;
const size_t src_idx = acVertexBufferIdx(i_src, j_src, k_src, mesh_info);
const size_t dst_idx = acVertexBufferIdx(i_dst, j_dst, k_dst, mesh_info);
ERRCHK(src_idx < acVertexBufferSize(mesh_info));
ERRCHK(dst_idx < acVertexBufferSize(mesh_info));
mesh->vertex_buffer[w][dst_idx] = mesh->vertex_buffer[w][src_idx];
}
}
}
}
}
#if 0
void
boundconds(const AcMeshInfo& mesh_info, ModelMesh* mesh)
{
const int mx = mesh_info.int_params[AC_mx];
const int my = mesh_info.int_params[AC_my];
const int mz = mesh_info.int_params[AC_mz];
// Volatile here suppresses the warning about strict-overflow (i.e. compiler
// wanted to optimize these loops by assuming that kxb etc never overflow)
// However we do not need the performance improvement (~1-3%) and it's
// not either good to
// a) get useless warnings originating from here
// b) disable the warnings completely
volatile const int kxb = mesh_info.int_params[AC_nx_min];
volatile const int kyb = mesh_info.int_params[AC_ny_min];
volatile const int kzb = mesh_info.int_params[AC_nz_min];
// The old kxt was inclusive, but our mx_max is exclusive
volatile const int kxt = mesh_info.int_params[AC_nx_max] - 1;
volatile const int kyt = mesh_info.int_params[AC_ny_max] - 1;
volatile const int kzt = mesh_info.int_params[AC_nz_max] - 1;
const int bound[3] = {0, 0, 0};
// Periodic boundary conditions
if (bound[0] == 0) {
for (int k = kzb; k <= kzt; k++) {
for (int j = kyb; j <= kyt; j++) {
for (int i = kxb; i <= kxb + 2; i++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (kxt + i - 2) + j * mx + k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
for (int i = kxt - 2; i <= kxt; i++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - kxt + 2) + j * mx + k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
}
if (bound[1] == 0) {
for (int k = kzb; k <= kzt; k++) {
for (int i = kxb; i <= kxt; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + (kyt + j - 2) * mx + k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
for (int j = kyt - 2; j <= kyt; j++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + (j - kyt + 2) * mx + k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
}
if (bound[2] == 0) {
for (int i = kxb; i <= kxt; i++) {
for (int j = kyb; j <= kyt; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + j * mx + (kzt + k - 2) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + j * mx + (k - kzt + 2) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
}
// Copy the corners in the fully periodic case
if (bound[0] == 0 && bound[1] == 0 && bound[2] == 0) {
// Source corner: x=0, y=0, z=0
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=1, y=0, z=0
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=0, y=1, z=0
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=0, y=0, z=1
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=1, y=1, z=0
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=1, y=0, z=1
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=0, y=1, z=1
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source corner: x=1, y=1, z=1
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
}
else {
ERROR("ONLY FULLY PERIODIC WORKS WITH CORNERS SO FAR! \n");
}
// Copy the edges in the fully periodic case
if (bound[0] == 0 && bound[1] == 0 && bound[2] == 0) {
// Source edge: x = 0, y = 0
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzb; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 1, y = 0
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzb; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + (j + my - STENCIL_ORDER) * mx +
k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 0, y = 1
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzb; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 1, y = 1
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzb; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + (j - my + STENCIL_ORDER) * mx +
k * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 0, z = 0
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyb; j <= kyt; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + j * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 1, z = 0
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyb; j <= kyt; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + j * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 0, z = 1
for (int i = kxb; i <= kxb + 2; i++) {
for (int j = kyb; j <= kyt; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i + mx - STENCIL_ORDER) + j * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: x = 1, z = 1
for (int i = kxt - 2; i <= kxt; i++) {
for (int j = kyb; j <= kyt; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = (i - mx + STENCIL_ORDER) + j * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: y = 0, z = 0
for (int i = kxb; i <= kxt; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + (j + my - STENCIL_ORDER) * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: y = 1, z = 0
for (int i = kxb; i <= kxt; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzb; k <= kzb + 2; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + (j - my + STENCIL_ORDER) * mx +
(k + mz - STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: y = 0, z = 1
for (int i = kxb; i <= kxt; i++) {
for (int j = kyb; j <= kyb + 2; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + (j + my - STENCIL_ORDER) * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
// Source edge: y = 1, z = 1
for (int i = kxb; i <= kxt; i++) {
for (int j = kyt - 2; j <= kyt; j++) {
for (int k = kzt - 2; k <= kzt; k++) {
const int inds = i + j * mx + k * mx * my;
const int indr = i + (j - my + STENCIL_ORDER) * mx +
(k - mz + STENCIL_ORDER) * mx * my;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
mesh->vertex_buffer[w]
[indr] = mesh->vertex_buffer[w]
[inds];
}
}
}
}
else {
ERROR("ONLY FULLY PERIODIC WORKS WITH EDGES SO FAR! \n");
}
}
#endif