Files
astaroth/samples/standalone_mpi/host_memory.cc

719 lines
29 KiB
C++

/*
Copyright (C) 2014-2020, Johannes Pekkila, Miikka Vaisala.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file
* \brief Brief info.
*
* Detailed info.
*
*/
#include "host_memory.h"
#include <math.h>
#include "astaroth_utils.h"
#include "errchk.h"
#define AC_GEN_STR(X) #X
const char* init_type_names[] = {AC_FOR_INIT_TYPES(AC_GEN_STR)};
#undef AC_GEN_STR
#define XORIG (AcReal(.5) * mesh->info.int_params[AC_nx] * mesh->info.real_params[AC_dsx])
#define YORIG (AcReal(.5) * mesh->info.int_params[AC_ny] * mesh->info.real_params[AC_dsy])
#define ZORIG (AcReal(.5) * mesh->info.int_params[AC_nz] * mesh->info.real_params[AC_dsz])
static AcReal
randr(void)
{
return AcReal(rand()) / AcReal(RAND_MAX);
}
void
lnrho_step(AcMesh* mesh)
{
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int mz = mesh->info.int_params[AC_mz];
// const int nx_min = mesh->info.int_params[AC_nx_min];
// const int nx_max = mesh->info.int_params[AC_nx_max];
// const int ny_min = mesh->info.int_params[AC_ny_min];
// const int ny_max = mesh->info.int_params[AC_ny_max];
// const int nz_min = mesh->info.int_params[AC_nz_min];
// const int nz_max = mesh->info.int_params[AC_nz_max];
// const AcReal DX = mesh->info.real_params[AC_dsx];
// const AcReal DY = mesh->info.real_params[AC_dsy];
// const AcReal DZ = mesh->info.real_params[AC_dsz];
// const AcReal xmax = DX * (nx_max - nx_min) ;
// const AcReal zmax = DZ * (nz_max - nz_min) ;
// const AcReal lnrho1 = (AcReal) -1.0; // TODO mesh->info.real_params[AC_lnrho1];
const AcReal lnrho2 = (AcReal)0.0; // TODO mesh->info.real_params[AC_lnrho2];
// const AcReal rho1 = (AcReal) exp(lnrho1);
// const AcReal rho2 = (AcReal) exp(lnrho2);
// const AcReal k_pert = (AcReal) 1.0; //mesh->info.real_params[AC_k_pert]; //Wamenumber of
// the perturbation const AcReal k_pert = 4.0; //mesh->info.real_params[AC_k_pert];
// //Wamenumber of the perturbation
// const AcReal ampl_pert = xmax/10.0; // xmax/mesh->info.real_params[AC_pert]; //Amplitude of
// the perturbation
// const AcReal ampl_pert = (AcReal) 0.0;//xmax/20.0; // xmax/mesh->info.real_params[AC_pert];
// //Amplitude of the perturbation const AcReal two_pi = (AcReal) 6.28318531;
// const AcReal xorig = mesh->info.real_params[AC_xorig];
// const AcReal zorig = mesh->info.real_params[AC_zorig];
// const AcReal trans = mesh->info.real_params[AC_trans];
// AcReal xx, zz, tanhprof, cosz_wave;
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
// zz = DZ * AcReal(k) - zorig; // Not used
// cosz_wave = ampl_pert*AcReal(cos(k_pert*((zz/zmax)*two_pi))); // Not used
// xx = DX * AcReal(i) - xorig + cosz_wave; //ADD WAVE TODO // Not used
// tanhprof = AcReal(0.5)*((rho2+rho1) + (rho2-rho1)*AcReal(tanh(xx/trans))); // Not
// used Commented out the step function initial codition.
// mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(tanhprof);
mesh->vertex_buffer[VTXBUF_LNRHO][idx] = lnrho2;
}
}
}
}
// This is the initial condition type for the infalling vedge in the pseudodisk
// model.
void
inflow_vedge(AcMesh* mesh)
{
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int mz = mesh->info.int_params[AC_mz];
// const int nx_min = mesh->info.int_params[AC_nx_min];
// const int nx_max = mesh->info.int_params[AC_nx_max];
// const int ny_min = mesh->info.int_params[AC_ny_min];
// const int ny_max = mesh->info.int_params[AC_ny_max];
// const int nz_min = mesh->info.int_params[AC_nz_min];
// const int nz_max = mesh->info.int_params[AC_nz_max];
// const double DX = mesh->info.real_params[AC_dsx];
// const double DY = mesh->info.real_params[AC_dsy];
const double DZ = mesh->info.real_params[AC_dsz];
const double AMPL_UU = mesh->info.real_params[AC_ampl_uu];
const double ANGL_UU = mesh->info.real_params[AC_angl_uu];
const double zorig = mesh->info.real_params[AC_zorig];
double zz;
double trans = mesh->info.real_params[AC_trans];
// const AcReal range = AcReal(.5);
// const AcReal zmax = AcReal(DZ * (nz_max - nz_min));
// const AcReal gaussr = zmax / AcReal(4.0);
// for (int k = nz_min; k < nz_max; k++) {
// for (int j = ny_min; j < ny_max; j++) {
// for (int i = nx_min; i < nx_max; i++) {
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
zz = DZ * double(k) - zorig;
// mesh->vertex_buffer[VTXBUF_UUX][idx] = -AMPL_UU*cos(ANGL_UU);
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(-AMPL_UU * cos(ANGL_UU) *
fabs(tanh(zz / trans)));
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(-AMPL_UU * sin(ANGL_UU) *
tanh(zz / trans));
// Variarion to density
// AcReal rho = exp(mesh->vertex_buffer[VTXBUF_LNRHO][idx]);
// NO GAUSSIAN//rho = rho*exp(-(zz/gaussr)*(zz/gaussr));
// mesh->vertex_buffer[VTXBUF_LNRHO][idx] = log(rho + (range*rho) * (randr() -
// AcReal(-0.5)));
}
}
}
}
// This is the initial condition type for the infalling vedge in the pseudodisk
// model.
void
simple_uniform_core(AcMesh* mesh)
{
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int mz = mesh->info.int_params[AC_mz];
const double DX = mesh->info.real_params[AC_dsx];
const double DY = mesh->info.real_params[AC_dsy];
const double DZ = mesh->info.real_params[AC_dsz];
const double ampl_lnrho = mesh->info.real_params[AC_ampl_lnrho];
const double xorig = mesh->info.real_params[AC_xorig];
const double yorig = mesh->info.real_params[AC_yorig];
const double zorig = mesh->info.real_params[AC_zorig];
const double G_const = mesh->info.real_params[AC_G_const];
const double M_sink_init = mesh->info.real_params[AC_M_sink_init];
const double cs2_sound = mesh->info.real_params[AC_cs2_sound];
const double RR_inner_bound = mesh->info.real_params[AC_soft] / AcReal(2.0);
const double core_coeff = (exp(ampl_lnrho) * cs2_sound) / (double(4.0) * M_PI * G_const);
double xx, yy, zz, RR;
double core_profile;
// TEMPORARY TEST INPUT PARAMETERS
const double core_radius = DX * 32.0;
const double trans = DX * 12.0;
// const double epsilon = DX*2.0;
const double vel_scale = mesh->info.real_params[AC_ampl_uu];
double abso_vel;
RR = 1.0;
printf("%e %e %e \n", RR, trans, core_radius);
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
xx = DX * double(i) - xorig;
yy = DY * double(j) - yorig;
zz = DZ * double(k) - zorig;
RR = sqrt(xx * xx + yy * yy + zz * zz);
if (RR >= RR_inner_bound) {
abso_vel = vel_scale * sqrt(2.0 * G_const * M_sink_init / RR);
core_profile = pow(RR, -2.0); // double(1.0);
}
else {
abso_vel = vel_scale * sqrt(2.0 * AC_G_const * AC_M_sink_init / RR_inner_bound);
core_profile = pow(RR_inner_bound, -2.0); // double(1.0);
}
if (RR <= sqrt(DX * DX + DY * DY + DZ * DZ)) {
abso_vel = 0.0;
RR = 1.0;
}
mesh->vertex_buffer[VTXBUF_LNRHO][idx] = AcReal(log(core_coeff * core_profile));
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(-abso_vel * (yy / RR));
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(abso_vel * (xx / RR));
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(0.0);
}
}
}
}
// This is the initial condition type for the infalling vedge in the pseudodisk
// model.
void
inflow_vedge_freefall(AcMesh* mesh)
{
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int mz = mesh->info.int_params[AC_mz];
// const int nx_min = mesh->info.int_params[AC_nx_min];
// const int nx_max = mesh->info.int_params[AC_nx_max];
// const int ny_min = mesh->info.int_params[AC_ny_min];
// const int ny_max = mesh->info.int_params[AC_ny_max];
// const int nz_min = mesh->info.int_params[AC_nz_min];
// const int nz_max = mesh->info.int_params[AC_nz_max];
const double DX = mesh->info.real_params[AC_dsx];
// const double DY = mesh->info.real_params[AC_dsy];
const double DZ = mesh->info.real_params[AC_dsz];
// const double AMPL_UU = mesh->info.real_params[AC_ampl_uu];
const double ANGL_UU = mesh->info.real_params[AC_angl_uu];
const double SQ2GM = mesh->info.real_params[AC_sq2GM_star];
// const double GM = mesh->info.real_params[AC_GM_star];
// const double M_star = mesh->info.real_params[AC_M_star];
// const double G_CONST = mesh->info.real_params[AC_G_CONST];
// const double unit_length = mesh->info.real_params[AC_unit_length];
// const double unit_density = mesh->info.real_params[AC_unit_density];
// const double unit_velocity = mesh->info.real_params[AC_unit_velocity];
const double xorig = mesh->info.real_params[AC_xorig];
// const double yorig = mesh->info.real_params[AC_yorig];
const double zorig = mesh->info.real_params[AC_zorig];
// const double trans = mesh->info.real_params[AC_trans];
// double xx, yy, zz, RR;
double xx, zz, RR;
// double delx, dely, delz;
double delx, delz;
// double u_x, u_y, u_z, veltot, tanhz;
double u_x, u_z, veltot, tanhz;
const double star_pos_x = mesh->info.real_params[AC_star_pos_x];
const double star_pos_z = mesh->info.real_params[AC_star_pos_z];
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
xx = DX * double(i) - xorig;
zz = DZ * double(k) - zorig;
delx = xx - star_pos_x;
delz = zz - star_pos_z;
// TODO: Figure out isthis needed. Now a placeholder.
// tanhz = fabs(tanh(zz/trans));
tanhz = 1.0;
RR = sqrt(delx * delx + delz * delz);
veltot = SQ2GM / sqrt(RR); // Free fall velocity
// Normal velocity components
u_x = -veltot * (delx / RR);
u_z = -veltot * (delz / RR);
// printf("star_pos_z %e, zz %e, delz %e, RR %e\n", star_pos_z, zz, delz, RR);
// printf("unit_length = %e, unit_density = %e, unit_velocity = %e,\n M_star = %e,
// G_CONST = %e, GM = %e, SQ2GM = %e, \n RR = %e, u_x = %e, u_z %e\n",
// unit_length, unit_density,
// unit_velocity, M_star, G_CONST, GM, SQ2GM, RR, u_x, u_z);
// printf("%e\n", unit_length*unit_length*unit_length);
// Here including an angel tilt due to pseudodisk
if (delz >= 0.0) {
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(
(u_x * cos(ANGL_UU) - u_z * sin(ANGL_UU)) * tanhz);
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(
(u_x * sin(ANGL_UU) + u_z * cos(ANGL_UU)) * tanhz);
}
else {
mesh->vertex_buffer[VTXBUF_UUX][idx] = AcReal(
(u_x * cos(ANGL_UU) + u_z * sin(ANGL_UU)) * tanhz);
mesh->vertex_buffer[VTXBUF_UUY][idx] = AcReal(0.0);
mesh->vertex_buffer[VTXBUF_UUZ][idx] = AcReal(
(-u_x * sin(ANGL_UU) + u_z * cos(ANGL_UU)) * tanhz);
}
}
}
}
}
// Only x-direction free fall
void
inflow_freefall_x(AcMesh* mesh)
{
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int mz = mesh->info.int_params[AC_mz];
const double DX = mesh->info.real_params[AC_dsx];
const double SQ2GM = mesh->info.real_params[AC_sq2GM_star];
// const double G_CONST = mesh->info.real_params[AC_G_CONST];
const double xorig = mesh->info.real_params[AC_xorig];
double xx, RR;
double delx;
double /*u_x,*/ veltot;
const double star_pos_x = mesh->info.real_params[AC_star_pos_x];
const double ampl_lnrho = mesh->info.real_params[AC_ampl_lnrho];
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
xx = DX * double(i) - xorig;
delx = xx - star_pos_x;
RR = fabs(delx);
veltot = SQ2GM / sqrt(RR); // Free fall velocity
if (isinf(veltot) == 1)
printf("xx %e star_pos_x %e delz %e RR %e veltot %e\n", xx, star_pos_x, delx,
RR, veltot);
// Normal velocity components
// u_x = - veltot; // Not used
// Freefall condition
// mesh->vertex_buffer[VTXBUF_UUX][idx] = u_x;
// mesh->vertex_buffer[VTXBUF_UUY][idx] = 0.0;
// mesh->vertex_buffer[VTXBUF_UUZ][idx] = 0.0;
// Starting with steady state
mesh->vertex_buffer[VTXBUF_UUX][idx] = 0.0;
mesh->vertex_buffer[VTXBUF_UUY][idx] = 0.0;
mesh->vertex_buffer[VTXBUF_UUZ][idx] = 0.0;
mesh->vertex_buffer[VTXBUF_LNRHO][idx] = AcReal(ampl_lnrho);
}
}
}
}
void
gaussian_radial_explosion(AcMesh* mesh)
{
AcReal* uu_x = mesh->vertex_buffer[VTXBUF_UUX];
AcReal* uu_y = mesh->vertex_buffer[VTXBUF_UUY];
AcReal* uu_z = mesh->vertex_buffer[VTXBUF_UUZ];
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int nx_min = mesh->info.int_params[AC_nx_min];
const int nx_max = mesh->info.int_params[AC_nx_max];
const int ny_min = mesh->info.int_params[AC_ny_min];
const int ny_max = mesh->info.int_params[AC_ny_max];
const int nz_min = mesh->info.int_params[AC_nz_min];
const int nz_max = mesh->info.int_params[AC_nz_max];
const double DX = mesh->info.real_params[AC_dsx];
const double DY = mesh->info.real_params[AC_dsy];
const double DZ = mesh->info.real_params[AC_dsz];
const double xorig = double(XORIG) - 0.000001;
const double yorig = double(YORIG) - 0.000001;
const double zorig = double(ZORIG) - 0.000001;
const double INIT_LOC_UU_X = 0.0;
const double INIT_LOC_UU_Y = 0.0;
const double INIT_LOC_UU_Z = 0.0;
const double AMPL_UU = mesh->info.real_params[AC_ampl_uu];
const double UU_SHELL_R = 0.8;
const double WIDTH_UU = 0.2;
// Outward explosion with gaussian initial velocity profile.
int idx;
double xx, yy, zz, rr2, rr, theta = 0.0, phi = 0.0;
double uu_radial;
// double theta_old = 0.0;
for (int k = nz_min; k < nz_max; k++) {
for (int j = ny_min; j < ny_max; j++) {
for (int i = nx_min; i < nx_max; i++) {
// Calculate the value of velocity in a particular radius.
idx = i + j * mx + k * mx * my;
// Determine the coordinates
xx = DX * (i - nx_min) - xorig;
xx = xx - INIT_LOC_UU_X;
yy = DY * (j - ny_min) - yorig;
yy = yy - INIT_LOC_UU_Y;
zz = DZ * (k - nz_min) - zorig;
zz = zz - INIT_LOC_UU_Z;
rr2 = pow(xx, 2.0) + pow(yy, 2.0) + pow(zz, 2.0);
rr = sqrt(rr2);
// Origin is different!
double xx_abs, yy_abs, zz_abs;
if (rr > 0.0) {
// theta range [0, PI]
if (zz >= 0.0) {
theta = acos(zz / rr);
if (theta > M_PI / 2.0 || theta < 0.0) {
printf("Explosion THETA WRONG: zz = %.3f, rr = "
"%.3f, theta = %.3e/PI, M_PI = %.3e\n",
zz, rr, theta / M_PI, M_PI);
}
}
else {
zz_abs = -zz; // Needs a posite value for acos
theta = M_PI - acos(zz_abs / rr);
if (theta < M_PI / 2.0 || theta > 2 * M_PI) {
printf("Explosion THETA WRONG: zz = %.3f, rr = "
"%.3f, theta = %.3e/PI, M_PI = %.3e\n",
zz, rr, theta / M_PI, M_PI);
}
}
// phi range [0, 2*PI]i
if (xx != 0.0) {
if (xx < 0.0 && yy >= 0.0) {
//-+
xx_abs = -xx; // Needs a posite value for atan
phi = M_PI - atan(yy / xx_abs);
if (phi < (M_PI / 2.0) || phi > M_PI) {
printf("Explosion PHI WRONG -+: xx = %.3f, yy "
"= %.3f, phi = %.3e/PI, M_PI = %.3e\n",
xx, yy, phi / M_PI, M_PI);
}
}
else if (xx > 0.0 && yy < 0.0) {
//+-
yy_abs = -yy;
phi = 2.0 * M_PI - atan(yy_abs / xx);
if (phi < (3.0 * M_PI) / 2.0 || phi > (2.0 * M_PI + 1e-6)) {
printf("Explosion PHI WRONG +-: xx = %.3f, yy "
"= %.3f, phi = %.3e/PI, M_PI = %.3e\n",
xx, yy, phi / M_PI, M_PI);
}
}
else if (xx < 0.0 && yy < 0.0) {
//--
yy_abs = -yy;
xx_abs = -xx;
phi = M_PI + atan(yy_abs / xx_abs);
if (phi < M_PI || phi > ((3.0 * M_PI) / 2.0 + 1e-6)) {
printf("Explosion PHI WRONG --: xx = %.3f, yy "
"= %.3f, xx_abs = %.3f, yy_abs = %.3f, "
"phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
xx, yy, xx_abs, yy_abs, phi, (3.0 * M_PI) / 2.0);
}
}
else {
//++
phi = atan(yy / xx);
if (phi < 0 || phi > M_PI / 2.0) {
printf("Explosion PHI WRONG --: xx = %.3f, yy = "
"%.3f, phi = %.3e, (3.0*M_PI)/2.0 = %.3e\n",
xx, yy, phi, (3.0 * M_PI) / 2.0);
}
}
}
else { // To avoid div by zero with atan
if (yy > 0.0) {
phi = M_PI / 2.0;
}
else if (yy < 0.0) {
phi = (3.0 * M_PI) / 2.0;
}
else {
phi = 0.0;
}
}
// Set zero for explicit safekeeping
if (xx == 0.0 && yy == 0.0) {
phi = 0.0;
}
// Gaussian velocity
// uu_radial = AMPL_UU*exp( -rr2 / (2.0*pow(WIDTH_UU, 2.0))
// ); New distribution, where that gaussion wave is not in
// the exact centre coordinates uu_radial = AMPL_UU*exp(
// -pow((rr - 4.0*WIDTH_UU),2.0) / (2.0*pow(WIDTH_UU, 2.0))
// ); //TODO: Parametrize the peak location.
uu_radial = AMPL_UU *
exp(-pow((rr - UU_SHELL_R), 2.0) / (2.0 * pow(WIDTH_UU, 2.0)));
}
else {
uu_radial = 0.0; // TODO: There will be a discontinuity in
// the origin... Should the shape of the
// distribution be different?
}
// Determine the carthesian velocity components and lnrho
uu_x[idx] = AcReal(uu_radial * sin(theta) * cos(phi));
uu_y[idx] = AcReal(uu_radial * sin(theta) * sin(phi));
uu_z[idx] = AcReal(uu_radial * cos(theta));
// Temporary diagnosticv output (TODO: Remove after not needed)
// if (theta > theta_old) {
// if (theta > M_PI || theta < 0.0 || phi < 0.0 || phi > 2*M_PI)
// {
/* printf("Explosion: xx = %.3f, yy = %.3f, zz = %.3f, rr =
%.3f, phi = %.3e/PI, theta = %.3e/PI\n, M_PI = %.3e", xx, yy,
zz, rr, phi/M_PI, theta/M_PI, M_PI); printf(" uu_radial =
%.3e, uu_x[%i] = %.3e, uu_y[%i] = %.3e, uu_z[%i] = %.3e \n",
uu_radial, idx, uu_x[idx], idx, uu_y[idx], idx,
uu_z[idx]); theta_old = theta;
*/
}
}
}
}
void
acmesh_init_to(const InitType& init_type, AcMesh* mesh)
{
srand(123456789);
const int n = acVertexBufferSize(mesh->info);
const int mx = mesh->info.int_params[AC_mx];
const int my = mesh->info.int_params[AC_my];
const int mz = mesh->info.int_params[AC_mz];
const int nx_min = mesh->info.int_params[AC_nx_min];
const int nx_max = mesh->info.int_params[AC_nx_max];
const int ny_min = mesh->info.int_params[AC_ny_min];
const int ny_max = mesh->info.int_params[AC_ny_max];
const int nz_min = mesh->info.int_params[AC_nz_min];
const int nz_max = mesh->info.int_params[AC_nz_max];
switch (init_type) {
case INIT_TYPE_RANDOM: {
acHostMeshClear(mesh);
const AcReal range = AcReal(0.01);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w)
for (int i = 0; i < n; ++i)
mesh->vertex_buffer[w][i] = 2 * range * randr() - range;
break;
}
case INIT_TYPE_GAUSSIAN_RADIAL_EXPL:
acHostMeshClear(mesh);
acHostVertexBufferSet(VTXBUF_LNRHO, mesh->info.real_params[AC_ampl_lnrho], mesh);
// acmesh_init_to(INIT_TYPE_RANDOM, mesh);
gaussian_radial_explosion(mesh);
break;
case INIT_TYPE_XWAVE:
acHostMeshClear(mesh);
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
for (int k = 0; k < mz; k++) {
for (int j = 0; j < my; j++) {
for (int i = 0; i < mx; i++) {
int idx = i + j * mx + k * mx * my;
mesh->vertex_buffer[VTXBUF_UUX][idx] = 2 * AcReal(sin(j * AcReal(M_PI) / mx)) -
1;
}
}
}
break;
case INIT_TYPE_SIMPLE_CORE:
acHostMeshClear(mesh);
simple_uniform_core(mesh);
break;
case INIT_TYPE_VEDGE:
acHostMeshClear(mesh);
inflow_vedge_freefall(mesh);
break;
case INIT_TYPE_VEDGEX:
acHostMeshClear(mesh);
inflow_freefall_x(mesh);
break;
case INIT_TYPE_RAYLEIGH_TAYLOR:
acHostMeshClear(mesh);
inflow_freefall_x(mesh);
lnrho_step(mesh);
break;
case INIT_TYPE_ABC_FLOW: {
acHostMeshClear(mesh);
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
for (int k = nz_min; k < nz_max; k++) {
for (int j = ny_min; j < ny_max; j++) {
for (int i = nx_min; i < nx_max; i++) {
const int idx = i + j * mx + k * mx * my;
/*
const double xx = double(
mesh->info.real_params[AC_dsx] *
(i - mesh->info.int_params[AC_nx_min]) -
XORIG + AcReal(.5) * mesh->info.real_params[AC_dsx]);
const double yy = double(
mesh->info.real_params[AC_dsy] *
(j - mesh->info.int_params[AC_ny_min]) -
YORIG + AcReal(.5) * mesh->info.real_params[AC_dsy]);
const double zz = double(
mesh->info.real_params[AC_dsz] *
(k - mesh->info.int_params[AC_nz_min]) -
ZORIG + AcReal(.5) * mesh->info.real_params[AC_dsz]);
*/
const AcReal xx = (i - nx_min) * mesh->info.real_params[AC_dsx] - XORIG;
const AcReal yy = (j - ny_min) * mesh->info.real_params[AC_dsy] - YORIG;
const AcReal zz = (k - nz_min) * mesh->info.real_params[AC_dsz] - ZORIG;
const AcReal ampl_uu = 0.5;
const AcReal ABC_A = 1.;
const AcReal ABC_B = 1.;
const AcReal ABC_C = 1.;
const AcReal kx_uu = 8.;
const AcReal ky_uu = 8.;
const AcReal kz_uu = 8.;
mesh->vertex_buffer[VTXBUF_UUX][idx] = ampl_uu *
(ABC_A * (AcReal)sin(kz_uu * zz) +
ABC_C * (AcReal)cos(ky_uu * yy));
mesh->vertex_buffer[VTXBUF_UUY][idx] = ampl_uu *
(ABC_B * (AcReal)sin(kx_uu * xx) +
ABC_A * (AcReal)cos(kz_uu * zz));
mesh->vertex_buffer[VTXBUF_UUZ][idx] = ampl_uu *
(ABC_C * (AcReal)sin(ky_uu * yy) +
ABC_B * (AcReal)cos(kx_uu * xx));
}
}
}
break;
}
case INIT_TYPE_RAYLEIGH_BENARD: {
acmesh_init_to(INIT_TYPE_RANDOM, mesh);
#if LTEMPERATURE
acVertexBufferSet(VTXBUF_LNRHO, 1, mesh);
const AcReal range = AcReal(0.9);
for (int k = nz_min; k < nz_max; k++) {
for (int j = ny_min; j < ny_max; j++) {
for (int i = nx_min; i < nx_max; i++) {
const int idx = i + j * mx + k * mx * my;
mesh->vertex_buffer[VTXBUF_TEMPERATURE][idx] = (range * (k - nz_min)) /
mesh->info
.int_params[AC_nz] +
0.1;
}
}
}
#else
WARNING("INIT_TYPE_RAYLEIGH_BERNARD called even though VTXBUF_TEMPERATURE is not used");
#endif
break;
}
default:
ERROR("Unknown init_type");
}
AcReal max_val = AcReal(-1e-32);
AcReal min_val = AcReal(1e32);
// Normalize the grid
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
for (int i = 0; i < n; ++i) {
if (mesh->vertex_buffer[w][i] < min_val)
min_val = mesh->vertex_buffer[w][i];
if (mesh->vertex_buffer[w][i] > max_val)
max_val = mesh->vertex_buffer[w][i];
}
}
printf("MAX: %f MIN %f\n", double(max_val), double(min_val));
/*
const AcReal inv_range = AcReal(1.) / fabs(max_val - min_val);
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
for (int i = 0; i < n; ++i) {
mesh->vertex_buffer[w][i] = 2*inv_range*(mesh->vertex_buffer[w][i] - min_val) - 1;
}
}
*/
}