Files
astaroth/acc/pseudodisk/stencil_process_isotherm_gravx.sps
2019-06-14 14:19:07 +03:00

170 lines
3.3 KiB
Scheme

// Declare uniforms (i.e. device constants)
uniform Scalar cs2_sound;
uniform Scalar nu_visc;
uniform Scalar cp_sound;
uniform Scalar mu0;
uniform Scalar eta;
uniform Scalar gamma;
uniform Scalar chi;
uniform Scalar zeta;
uniform Scalar xorig;
uniform Scalar yorig;
uniform Scalar zorig;
//Star position
uniform Scalar star_pos_x;
uniform Scalar star_pos_z;
uniform Scalar GM_star;
uniform int nx_min;
uniform int ny_min;
uniform int nz_min;
uniform int nx;
uniform int ny;
uniform int nz;
//Needed for gravity
uniform Scalar dsx;
uniform Scalar dsy;
uniform Scalar dsz;
uniform Scalar inv_dsx;
uniform Scalar inv_dsy;
uniform Scalar inv_dsz;
Scalar
distance_x(Vector a, Vector b)
{
return sqrt(dot(a-b, a-b));
}
Vector
value(in Vector uu)
{
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
}
Matrix
gradients(in Vector uu)
{
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
}
Scalar
continuity(in Vector uu, in Scalar lnrho) {
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
}
// "Line-like" gravity with no y-component
Vector
grav_force_line(const int3 vertexIdx)
{
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
Vector star_pos = (Vector){star_pos_x, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
const Scalar RR = vertex_pos.x - star_pos.x;
const Scalar G_force_abs = GM_star / (RR*RR); // Force per unit mass;
Vector G_force = (Vector){ - G_force_abs,
AcReal(0.0),
AcReal(0.0)};
return G_force;
}
Vector
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
Vector mom;
const Matrix S = stress_tensor(uu);
mom = -mul(gradients(uu), value(uu)) -
cs2_sound * gradient(lnrho) +
nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
+ grav_force_line(vertexIdx);
return mom;
}
Vector
induction(in Vector uu, in Vector aa) {
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
// Note, mu0 is cancelled out
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
return ind;
}
// Declare input and output arrays using locations specified in the
// array enum in astaroth.h
in Scalar lnrho = VTXBUF_LNRHO;
out Scalar out_lnrho = VTXBUF_LNRHO;
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
#if LINDUCTION
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
#endif
Kernel void
solve(Scalar dt) {
WRITE(out_lnrho, RK3(out_lnrho, lnrho, continuity(uu, lnrho), dt));
#if LINDUCTION
WRITE(out_aa, RK3(out_aa, aa, induction(uu, aa), dt));
#endif
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
}