175 lines
3.7 KiB
Scheme
175 lines
3.7 KiB
Scheme
|
|
// Declare uniforms (i.e. device constants)
|
|
uniform Scalar cs2_sound;
|
|
uniform Scalar nu_visc;
|
|
uniform Scalar cp_sound;
|
|
uniform Scalar mu0;
|
|
uniform Scalar eta;
|
|
uniform Scalar gamma;
|
|
uniform Scalar chi;
|
|
uniform Scalar zeta;
|
|
|
|
uniform Scalar xorig;
|
|
uniform Scalar yorig;
|
|
uniform Scalar zorig;
|
|
|
|
//Star position
|
|
uniform Scalar star_pos_x;
|
|
uniform Scalar star_pos_z;
|
|
uniform Scalar GM_star;
|
|
|
|
uniform int nx_min;
|
|
uniform int ny_min;
|
|
uniform int nz_min;
|
|
uniform int nx;
|
|
uniform int ny;
|
|
uniform int nz;
|
|
|
|
//Needed for gravity
|
|
uniform Scalar dsx;
|
|
uniform Scalar dsy;
|
|
uniform Scalar dsz;
|
|
uniform Scalar inv_dsx;
|
|
uniform Scalar inv_dsy;
|
|
uniform Scalar inv_dsz;
|
|
|
|
Scalar
|
|
distance(Vector a, Vector b)
|
|
{
|
|
return sqrt(dot(a-b, a-b));
|
|
}
|
|
|
|
Vector
|
|
value(in Vector uu)
|
|
{
|
|
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
|
}
|
|
|
|
Matrix
|
|
gradients(in Vector uu)
|
|
{
|
|
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
|
}
|
|
|
|
Scalar
|
|
continuity(in Vector uu, in Scalar lnrho) {
|
|
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
|
}
|
|
|
|
|
|
// "Line-like" gravity with no y-component
|
|
Vector
|
|
grav_force_line(const int3 vertexIdx)
|
|
{
|
|
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
|
//Vector star_pos = (Vector){star_pos_x - xorig, dsy * vertexIdx.y - yorig, star_pos_z - zorig};
|
|
Vector star_pos = (Vector){star_pos_x, dsy * vertexIdx.y - yorig, star_pos_z};
|
|
//LIKE THIS: Vector star_pos = (Vector){star_pos_x, 0.0, star_pos_z};
|
|
|
|
const Scalar RR = distance(star_pos, vertex_pos);
|
|
|
|
const Scalar G_force_abs = GM_star / (RR*RR); // Force per unit mass;
|
|
//const Scalar G_force_abs = 1.0; // Simple temp. test;
|
|
|
|
Vector G_force = (Vector){ - G_force_abs*((vertex_pos.x-star_pos.x)/RR),
|
|
AcReal(0.0),
|
|
- G_force_abs*((vertex_pos.z-star_pos.z)/RR)};
|
|
|
|
//printf("G_force %e %e %e", G_force_abs.x, G_force_abs.y, G_force_abs.z)
|
|
|
|
return G_force;
|
|
}
|
|
|
|
|
|
Vector
|
|
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
|
Vector mom;
|
|
|
|
const Matrix S = stress_tensor(uu);
|
|
|
|
mom = -mul(gradients(uu), value(uu)) -
|
|
cs2_sound * gradient(lnrho) +
|
|
nu_visc *
|
|
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
|
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
|
+ grav_force_line(vertexIdx);
|
|
|
|
|
|
return mom;
|
|
}
|
|
|
|
Vector
|
|
induction(in Vector uu, in Vector aa) {
|
|
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
|
// x A)) in order to avoid taking the first derivative twice (did the math,
|
|
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
|
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
|
|
const Vector B = curl(aa);
|
|
const Vector grad_div = gradient_of_divergence(aa);
|
|
const Vector lap = laplace_vec(aa);
|
|
|
|
// Note, mu0 is cancelled out
|
|
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
|
|
|
|
return ind;
|
|
}
|
|
|
|
// Declare input and output arrays using locations specified in the
|
|
// array enum in astaroth.h
|
|
in Scalar lnrho = VTXBUF_LNRHO;
|
|
out Scalar out_lnrho = VTXBUF_LNRHO;
|
|
|
|
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
|
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
|
|
|
#if LINDUCTION
|
|
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
|
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
|
#endif
|
|
|
|
Kernel void
|
|
solve(Scalar dt) {
|
|
WRITE(out_lnrho, RK3(out_lnrho, lnrho, continuity(uu, lnrho), dt));
|
|
|
|
#if LINDUCTION
|
|
WRITE(out_aa, RK3(out_aa, aa, induction(uu, aa), dt));
|
|
#endif
|
|
|
|
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|