Files
astaroth/analysis/python/calc/galli_shu_plotter.py
2019-06-14 14:19:07 +03:00

836 lines
31 KiB
Python

'''
Copyright (C) 2014-2019, Johannes Pekkilae, Miikka Vaeisalae.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
'''
import numpy as np
import pylab as plt
import scipy as scp
import matplotlib.colors as colors
G_newton = 6.674e-8 #cm**3 g**-1 s**-2
# Time to convert to physical quantities
yr = 3.154e+7 #s
kyr = 1000.0*yr
km = 1e5 #cm
AU = 1.496e+13 #cm
Msun = 1.98847e33 #g
#cs0 = 20000.0 #cs cm/s "a" in Shu notation
cs0 = 35000.0 #cs cm/s "a" in Shu notation
B0 = 30e-6 #G
ksii = 11.3 #
#GS Eq. 10
ttm = 9.03e12*(cs0/35000.0)/(B0/30e-6)
CM_INFERNO = plt.cm.get_cmap('inferno')
def P_harmonics(theta, J=666):
#Vector spherical harmonics in e_r direction
if J == 0:
P = np.ones_like(theta) # 1.0
elif J == 2:
cos_theta = np.cos(theta)
P = (1.0/2.0)*(3.0*(cos_theta**2.0) - 1.0)
else:
P = 0.0
#print("P_2", P)
return P
def B_harmonics(theta, J=666):
#Vector spherical harmonics in e_theta direction
#print("B_harmonics theta", theta)
if J == 2:
sin_theta = np.abs(np.sin(theta))
cos_theta = np.cos(theta)
#B = -(3.0/np.sqrt(6.0))*cos_theta*sin_theta #Morse & Feshbach 1953 book
B = -3.0*cos_theta*sin_theta #GS93 Appendix B
else:
B = 0.0*theta
#print("B_harmonics", B)
return B
def get_tau(tt):
return tt/ttm
def get_SHU77_potential(xx_point):
#Copied here again for convenience
m0 = 0.975 #Shu 77 core reduced mass
xx_SHU_table = np.array([ 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95, 1.00])
mm_SHU77_table = np.array([0.981, 0.993, 1.01, 1.03, 1.05,
1.08, 1.12, 1.16, 1.20, 1.25,
1.30, 1.36, 1.42, 1.49, 1.56,
1.64, 1.72, 1.81, 1.90, 2.00])
xx = xx_SHU_table[ np.where(xx_SHU <= xx_point)]
mm = mm_SHU77_table[np.where(xx_SHU <= xx_point)]
psi = - m0/xx_point + np.trapz(mm/(xx**2.0), xx)
return psi
def psi2(xx_SHU, mm_term, pp_term, J=666):
#GS93 Eq. 113
if J == 0:
psi2 = - mm_term/xx_SHU + pp_term
elif J == 2:
psi2 = - mm_term/(xx_SHU**3.0) + (xx_SHU**2.0)*pp_term
else:
psi2 = 0.0
#print('psi2', psi2, 'J', J, 'mm_term', mm_term, 'xx_SHU', xx_SHU, 'pp_term', pp_term)
return psi2
# Calculate the directional parameter
def dv_dx(xx,vv, alpha):
EE = alpha*(xx-vv) - 2.0/xx
HH = (xx-vv)**2.0 - 1.0
return (EE/HH)*(xx-vv)
def dalpha_dx(xx,vv, alpha):
EE = alpha*(alpha - (2.0/xx)*(xx-vv))
HH = (xx-vv)**2.0 - 1.0
return (EE/HH)*(xx-vv)
def dpsi_dx(xx, mm):
return mm/(xx**2.0)
def dmm_dx(xx, alpha):
return (xx**2.0)*alpha
def dphi_dx(xx, alpha, mm, theta):
ff_zero_der = 0.5*mm*dmm_dx(xx, alpha)
sin_theta = np.sin(theta)
return ff_zero_der*(sin_theta*2.0)
def deltaspace(theta, tau):
#Assuming J= 0, 2 only
v0 = -2.222e-1
v2 = 2.177e-1
deltaJ2 = -(1.0/3.0)*((v0+2.0/3.0)*P_harmonics(theta, J=0) + (v2 - 2.0/3.0)*P_harmonics(theta, J=2))
delta = 1 + (tau**2.0)*deltaJ2
return delta
def delta2(theta, tau):
#Assuming J= 0, 2 only
return deltaspace(theta, tau)**2.0
def yy_transform(xx_SHU, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93):
return alpha_mono_GS93, alpha_quad_GS93
# Calculating the perturbation stage
def alpha_perturb(tau, xx_SHU, vv_SHU77, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93, theta):
#Assuming J= 0, 2 only
directional = xx_SHU*dalpha_dx(xx_SHU, vv_SHU77, alpha_SHU77)*delta2(theta, tau)
directional = 0.0 #
alpha = alpha_mono_GS93*P_harmonics(theta, J=0) + alpha_quad_GS93*P_harmonics(theta, J=2) + directional
return alpha
def vv_perturb(tau, xx_SHU, vv_SHU77, alpha_SHU77, vv_ww_mono_GS93, vv_ww_quad_GS93, theta):
#Assuming J= 0, 2 only
directional = xx_SHU*dv_dx(xx_SHU, vv_SHU77, alpha_SHU77)*delta2(theta, tau)
directional = 0.0 #
vv_mono = vv_ww_mono_GS93[0]
vv_quad = vv_ww_quad_GS93[0]
ww_mono = vv_ww_mono_GS93[1]
ww_quad = vv_ww_quad_GS93[1]
#print('vv_mono, vv_quad, ww_mono, ww_quad', vv_mono, vv_quad, ww_mono, ww_quad)
vv_r = vv_mono*P_harmonics(theta, J=0) + vv_quad*P_harmonics(theta, J=2) + directional ## vv
vv_theta = ww_mono*B_harmonics(theta, J=0) + ww_quad*B_harmonics(theta, J=2) + directional ## ww
#print("vv_r, vv_theta", vv_r, vv_theta)
vv = np.array([vv_r, vv_theta])
return vv
def psi_perturb(tau, xx_SHU, mm_SHU77, mm_pp_mono_GS93, mm_pp_quad_GS93, theta):
#Assuming J= 0, 2 only
directional = xx_SHU*dpsi_dx(xx_SHU, mm_SHU77)*delta2(theta, tau)
directional = 0.0 #
mm_mono = mm_pp_mono_GS93[0]
mm_quad = mm_pp_quad_GS93[0]
pp_mono = mm_pp_mono_GS93[1]
pp_quad = mm_pp_quad_GS93[1]
#print('mm_pp_mono_GS93', mm_pp_mono_GS93)
#print('mm_mono', mm_mono)
psi = psi2(xx_SHU, mm_mono, pp_mono, J=0)*P_harmonics(theta, J=0) \
+ psi2(xx_SHU, mm_quad, pp_quad, J=0)*P_harmonics(theta, J=2) \
+ directional
#print('psi_perturb', psi)
return psi
def phi_vecpot_second_order(tau, xx_SHU, mm_SHU77, alpha_SHU77, FF_DD_mono_GS93, FF_DD_quad_GS93, theta):
directional = xx_SHU*dphi_dx(xx_SHU, alpha_SHU77, mm_SHU77, theta)*delta2(theta, tau)
directional = 0.0 #
sin_theta = np.sin(theta)
#print(FF_DD_mono_GS93)
#print(FF_DD_quad_GS93)
#print(ksii, P_harmonics(theta, J=0), P_harmonics(theta, J=2))
mono_term = (FF_DD_mono_GS93[0] + (1.0/ksii)*FF_DD_mono_GS93[1])
quad_term = (FF_DD_quad_GS93[0] + (1.0/ksii)*FF_DD_quad_GS93[1])
phi_vecpot_second = (sin_theta**2.0)*( mono_term*P_harmonics(theta, J=0) \
+ quad_term*P_harmonics(theta, J=2) ) \
+ directional
return phi_vecpot_second
def phi_vecpot_zero_order(xx_SHU, mm_SHU77, theta):
ff_zero = 0.25*(mm_SHU77**2.0)
sin_theta = np.sin(theta)
phi_vecpot_zero = ff_zero*(sin_theta*2.0)
return phi_vecpot_zero
# Combining the perturbation stage.
def alpha_xvec_tau(tau, xx_SHU, vv_SHU77, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93, theta):
alpha = alpha_SHU77 + (tau**2.0)*alpha_perturb(tau, xx_SHU, vv_SHU77, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93, theta)
return alpha
def vv_xvec_tau(tau, xx_SHU, vv_SHU77, alpha_SHU77, vv_ww_mono_GS93, vv_ww_quad_GS93, theta):
vv = (tau**2.0)*vv_perturb(tau, xx_SHU, vv_SHU77, alpha_SHU77, vv_ww_mono_GS93, vv_ww_quad_GS93, theta)
#print("BF",vv, vv_ww_mono_GS93, vv_ww_quad_GS93)
vv[0] = vv_SHU77 + vv[0]
vv[1] = 0.0 + vv[1] #No poloidal velocity in Shu77
#print("AF",vv)
return vv
def psi_xvec_tau(tau, xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta):
#print("psi_xvec_tau --- tau, xx_SHU, mm_SHU7, mm_pp_mono, mm_pp_quad, theta", tau, xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta)
psi = (tau**2.0)*psi_perturb(tau, xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta)
psi77 = get_SHU77_potential(xx_SHU)
#print('psi77', psi77)
psi = psi77 + psi
#print('psi_xvec_tau', psi)
return psi
def phi_vecpot_xvec_tau(tau, xx_SHU, mm_SHU77, alpha_SHU77, FF_DD_mono_GS93, FF_DD_quad_GS93, theta):
phi_vecpot_second = (tau**2.0)*phi_vecpot_second_order(tau, xx_SHU, mm_SHU77, alpha_SHU77, FF_DD_mono_GS93, FF_DD_quad_GS93, theta)
phi_vecpot_zero = phi_vecpot_zero_order(xx_SHU, mm_SHU77, theta)
phi_vecpot = phi_vecpot_zero + phi_vecpot_second
return phi_vecpot
#Physical unit converion stage
def rho_rt(tt, xx_SHU, vv_SHU77, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93, theta):
tau = get_tau(tt)
alpha_xvec = alpha_xvec_tau(tau, xx_SHU, vv_SHU77, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93, theta)
rho = (1.0/(4.0*np.pi*G_newton*(tt**2.0))) * alpha_xvec
return rho, alpha_xvec
def uu_rt(tt, xx_SHU, vv_SHU77, alpha_SHU77, vv_ww_mono_GS93, vv_ww_quad_GS93, theta):
tau = get_tau(tt)
vv_xvec = vv_xvec_tau(tau, xx_SHU, vv_SHU77, alpha_SHU77, vv_ww_mono_GS93, vv_ww_quad_GS93, theta)
uu = cs0*vv_xvec
return uu, vv_xvec
def grav_psi_rt(tt, xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta):
tau = get_tau(tt)
#print("tt , xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta", tt, xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta)
psi_xvec = psi_xvec_tau(tau, xx_SHU, mm_SHU77, mm_pp_mono, mm_pp_quad, theta)
Vpot = (cs0**2.0)*psi_xvec
return Vpot, psi_xvec
def vectorpot_rt(tt, xx_SHU, mm_SHU77, alpha_SHU77, FF_DD_mono_GS93, FF_DD_quad_GS93, theta):
tau = get_tau(tt)
phi_vecpot_xvec = phi_vecpot_xvec_tau(tau, xx_SHU, mm_SHU77, alpha_SHU77, FF_DD_mono_GS93, FF_DD_quad_GS93, theta)
Phi_flux = np.pi*B0*((cs0*tt)**2.0)*phi_vecpot_xvec
return Phi_flux, phi_vecpot_xvec
###def match_xx(xx_rad, xx_SHU):
### xx_buffer = np.empty_like(xx_rad)
### stride = np.abs(xx_SHU[1] - xx_SHU[0])
### for xx in xx_SHU:
### #where xx - stride < xx_rad < xx + stride -> xx_rad[i] = xx
### #loc = np.where((xx_rad <= (xx + stride) and xx_rad > (xx - stride) ))
### loc = np.where(xx_rad <= (xx + stride) )
### print(loc)
def get_shu_index(xx, xx_SHU):
stride = np.abs(xx_SHU[1] - xx_SHU[0])/2.0
#ishu = np.where((xx_SHU <= (xx + stride)) & (xx_SHU > (xx - stride)))[0]
#TODO Now a purkka version. Do better.
# Can be improve by taking the treatment of the actual low and high x cases.
if (xx > xx_SHU[xx_SHU.size-1]):
ishu = xx_SHU.size-1
elif (xx < xx_SHU[0]):
ishu = 0
else:
ishu = np.where((xx_SHU <= (xx + stride)) & (xx_SHU > (xx - stride)))[0]
#print("get_shu_index", ishu, ishu.size)
ishu = ishu[0]
#print("get_shu_index", ishu, ishu.size)
#print(ishu, xx_SHU[ishu], xx)
return ishu
def plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, xxvar, physvar,
vv_hor=np.array(None), vv_ver=np.array(None), uu_hor=np.array(None), uu_ver=np.array(None),
title1=r"\alpha", title2=r"\rho", filetitle='density',
var_min=[None, None], var_max=[None, None], colmap=CM_INFERNO, normtype='log',
streamlines = 0, contourplot = 0):
if var_min[0] != None:
if normtype == 'log':
mynorm1 = colors.LogNorm( vmin=var_min[0], vmax=var_max[0] )
mynorm2 = colors.LogNorm( vmin=var_min[1], vmax=var_max[1] )
else:
mynorm1 = colors.Normalize( vmin=var_min[0], vmax=var_max[0] )
mynorm2 = colors.Normalize( vmin=var_min[1], vmax=var_max[1] )
else:
mynorm1 = colors.Normalize( )
mynorm2 = colors.Normalize( )
if contourplot:
if normtype =='cdensity':
numbers = np.arange(0, 20, dtype=np.float64)
contourlevs = 1e-20*(np.sqrt(2.0)**numbers)
contournorm = colors.LogNorm( vmin=contourlevs.min(), vmax=contourlevs.max() )
elif normtype =='cflux':
contourlevs = np.linspace(1.0, 1e31, num=20)
contournorm = colors.Normalize( vmin=contourlevs.min(), vmax=contourlevs.max() )
else:
contourlevs = np.linspace(physvar.min(), physvar.max(), num=10)
contournorm = colors.Normalize( vmin=contourlevs.min(), vmax=contourlevs.max() )
##rr_horizontal_corners = xx_horizontal_corners*(cs0*tt)/AU
##rr_vertical_corners = xx_vertical_corners* (cs0*tt)/AU
##rr_horizontal = xx_horizontal*(cs0*tt)/AU
##rr_vertical = xx_vertical* (cs0*tt)/AU
rr_horizontal_corners = xx_horizontal_corners*(cs0*tt)/1e17
rr_vertical_corners = xx_vertical_corners* (cs0*tt)/1e17
rr_horizontal = xx_horizontal*(cs0*tt)/1e17
rr_vertical = xx_vertical* (cs0*tt)/1e17
figa, axa = plt.subplots(nrows=1, ncols=2, figsize=(16,6))
if contourplot:
mapa = axa[0].contourf(xx_horizontal, xx_vertical, xxvar, cmap=colmap, norm=mynorm1)
maprho = axa[1].contourf(rr_horizontal, rr_vertical, physvar, contourlevs, cmap=colmap, norm=contournorm)
else:
mapa = axa[0].pcolormesh(xx_horizontal_corners, xx_vertical_corners, xxvar, cmap=colmap, norm=mynorm1 )
maprho = axa[1].pcolormesh(rr_horizontal_corners, rr_vertical_corners, physvar, cmap=colmap, norm=mynorm2)
#mapa = axa[0].contourf(xx_horizontal, xx_vertical, alpha, cmap=CM_INFERNO, norm=colors.LogNorm(vmin=0.1, vmax=50.0))
#maprho = axa[1].contourf(xx_horizontal*(cs0*tt)/AU, xx_vertical*(cs0*tt)/AU, rho, cmap=CM_INFERNO, norm=colors.LogNorm(vmin=1e15, vmax=1e20))
if vv_hor.any() != None:
if streamlines:
#vv_tot = np.sqrt(vv_hor**2.0 + vv_ver**2.0)
#vv_tot = np.log(vv_tot/vv_tot.max())
axa[0].streamplot(xx_horizontal, xx_vertical, vv_hor, vv_ver, color = 'k')
axa[1].streamplot(rr_horizontal, rr_vertical, uu_hor, uu_ver, color = 'k' )
else:
axa[0].quiver(xx_horizontal, xx_vertical, vv_hor, vv_ver, pivot = 'middle')
axa[1].quiver(rr_horizontal, rr_vertical, uu_hor, uu_ver, pivot = 'middle')
fig.colorbar(mapa, ax=axa[0])
fig.colorbar(maprho, ax=axa[1])
tau = get_tau(tt)
tt_kyr = tt/kyr
axa[0].set_title(r'$%s(x, \tau = %.3f)$ ' % (title1, tau))
axa[1].set_title(r'$%s(r, t = %.3f \mathrm{kyr})$ ' % (title2, tt_kyr))
axa[0].set_xlabel('x')
axa[0].set_ylabel('x')
#axa[1].set_xlabel('r (AU)')
#axa[1].set_ylabel('r (AU)')
axa[1].set_xlabel(r'r ($10^{17}$ cm)')
axa[1].set_ylabel(r'r ($10^{17}$ cm)' )
##axa[1].set_xlim(0.0, 3e17/AU)
##axa[1].set_ylim(0.0, 3e17/AU)
axa[1].set_xlim(0.0, 3.0)
axa[1].set_ylim(0.0, 3.0)
axa[0].set_aspect('equal', 'datalim')
#axa[1].set_aspect('equal', 'datalim')
figfile = '%s_%s.png' % (filetitle, str(numslice).zfill(6))
print(figfile)
figa.savefig(figfile)
plt.close(figa)
xx_SHU = np.array([ 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50,
0.55, 0.60, 0.65, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95, 1.00])
alpha_SHU77 = np.array([ 71.5, 27.8, 16.4, 11.5, 8.76,
7.09, 5.95, 5.14, 4.52, 4.04,
3.66, 3.35, 3.08, 2.86, 2.67,
2.50, 2.35, 2.22, 2.10, 2.00])
vv_SHU77 = -np.array([ 5.44, 3.47, 2.58, 2.05, 1.68,
1.40, 1.18, 1.01, 0.861, 0.735,
0.625, 0.528, 0.442, 0.363, 0.291,
0.225, 0.163, 0.106, 0.051, 0.00])
mm_SHU77 = np.array([0.981, 0.993, 1.01, 1.03, 1.05,
1.08, 1.12, 1.16, 1.20, 1.25,
1.30, 1.36, 1.42, 1.49, 1.56,
1.64, 1.72, 1.81, 1.90, 2.00])
#GS Table 1
alpha_mono_GS93 = np.array([ 6.304, 2.600, 1.652, 1.156, 9.005e-1,
7.314e-1, 6.084e-1, 5.084e-1, 4.256e-1, 3.517e-1,
2.829e-1, 2.172e-1, 1.488e-1, 8.091e-2, 8.360e-3,
-6.826e-2, -1.512e-1, -2.406e-1, -3.382e-1, -4.444e-1])
vv_ww_mono_GS93 = np.array([[4.372e-1, 3.335e-1, 2.390e-1, 1.918e-1, 1.522e-1,
1.226e-1, 9.579e-2, 7.103e-2, 4.828e-2, 2.640e-2,
5.058e-3, -1.588e-2, -3.791e-2, -5.975e-2, -8.293e-2,
-1.071e-1, -1.330e-1, -1.605e-1, -1.902e-1, -2.222e-1],
[ 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0]])
mm_pp_mono_GS93 = np.array([[8.634e-4, 1.959e-3, 3.560e-3, 5.661e-3, 8.235e-3,
1.130e-2, 1.482e-2, 1.873e-2, 2.293e-2, 2.730e-2,
3.166e-2, 3.579e-2, 3.935e-2, 4.196e-2, 4.312e-2,
4.221e-2, 3.847e-2, 3.097e-2, 1.859e-2, 0.0],
[ 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0]])
FF_DD_mono_GS93 = np.array([[ -1.130, -3.275e-1, -1.355e-1, -6.415e-2, -2.889e-2, #F
-8.387e-3, 5.358e-3, 1.534e-2, 2.303e-2, 2.931e-2,
3.454e-2, 3.888e-2, 4.225e-2, 4.442e-2, 4.504e-2,
4.358e-2, 3.935e-2, 3.146e-2, 1.881e-2, 0.0],
[ -1.246e1, -3.168, -1.141, -5.740e-1, -3.178e-1, #D
-1.878e-1, -1.049e-1, -4.547e-2, 3.393e-4, 3.924e-2,
7.431e-2, 1.070e-1, 1.376e-1, 1.650e-1, 1.867e-1,
1.992e-1, 1.966e-1, 1.708e-1, 1.103e-1, 0.0]])
#GS Table 2
alpha_quad_GS93 = np.array([ -1.096e3, -1.191e2, -3.148e1, -1.158e1, -5.105,
-2.456, -1.217, -5.889e-1, -2.569e-1, -7.024e-2,
3.790e-2, 1.042e-1, 1.505e-1, 1.845e-1, 2.163e-1,
2.492e-1, 2.865e-1, 3.302e-1, 3.823e-1, 4.437e-1])
vv_ww_quad_GS93 = np.array([[ -2.581, -1.533, -8.072e-1, -5.666e-1, -3.905e-1, #v
-2.790e-1, -1.928e-1, -1.254e-1, -7.156e-2, -2.614e-2,
1.267e-2, 4.650e-2, 7.724e-2, 1.042e-1, 1.288e-1,
1.510e-1, 1.711e-1, 1.889e-1, 2.045e-1, 2.177e-1],
[ -2.085, -4.890, -1.811, -8.842e-1, -4.816e-1, #w
-2.807e-1, -1.628e-1, -8.779e-2, -3.852e-2, -4.481e-3,
1.928e-2, 3.578e-2, 4.683e-2, 5.306e-2, 5.512e-2,
5.312e-2, 4.704e-2, 3.670e-2, 2.179e-2, 1.898e-3]])
mm_pp_quad_GS93 = np.array([[-3.860e-5, -1.541e-4, -3.044e-4, -4.847e-4, -6.831e-4, #m
-8.874e-4, -1.083e-3, -1.253e-3, -1.385e-3, -1.462e-3,
-1.470e-3, -1.389e-3, -1.191e-3, -8.405e-4, -2.841e-4,
5.579e-4, 1.800e-3, 3.609e-3, 6.218e-3, 9.951e-3],
[ -7.539e1, -7.275, -1.730, -5.586e-1, -1.999e-1, #p
-6.591e-1, -1.062e-2, 1.294e-2, 2.267e-2, 2.600e-2,
2.625e-2, 2.500e-2, 2.294e-2, 2.046e-2, 1.769e-2,
1.469e-2, 1.146e-2, 7.941e-3, 4.102e-3, -1.214e-4]])
FF_DD_quad_GS93 = np.array([[ -2.253, -6.517e-1, -2.722e-1, -1.345e-1, -6.993e-2, #F
-3.593e-2, -1.660e-2, -5.864e-3, -6.809e-4, 8.213e-4,
-3.086e-4, -3.338e-3, -7.681e-3, -1.272e-2, -1.778e-2,
-2.191e-2, -2.392e-2, -2.219e-2, -1.457e-2, 1.729e-3],
[ -2.484e1, -6.258, -2.221, -1.102, -6.127e-1, #D
-3.645e-1, -2.213e-1, -1.297e-1, -7.020e-2, -1.112e-2,
-2.139e-3, -1.615e-2, 2.744e-2, 3.252e-2, 3.269e-2,
2.839e-2, 2.104e-2, 1.199e-2, 3.732e-3, 0.0]])
tt = 0.3*ttm
theta = 0.5*np.pi
xx_SHU = xx_SHU[:-1]
vv_SHU77 = vv_SHU77[:-1]
alpha_SHU77 = alpha_SHU77[:-1]
alpha_mono_GS93 = alpha_mono_GS93[:-1]
alpha_quad_GS93 = alpha_quad_GS93[:-1]
vv_ww_mono_GS93 = np.array([vv_ww_mono_GS93[0][:-1], vv_ww_mono_GS93[1][:-1]])
vv_ww_quad_GS93 = np.array([vv_ww_quad_GS93[0][:-1], vv_ww_quad_GS93[1][:-1]])
rho, alpha_xvec = rho_rt(tt, xx_SHU, vv_SHU77, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93, theta)
rr = xx_SHU*cs0*tt
np.set_printoptions(linewidth=200)
print(rho.shape)
print(xx_SHU.shape)
print(rho)
print(xx_SHU)
print(vv_ww_mono_GS93)
print(vv_ww_quad_GS93)
print(vv_ww_quad_GS93[0])
print(vv_ww_quad_GS93[1])
#plt.figure()
#plt.plot(rr, rho)
#
#plt.figure()
#plt.plot(xx_SHU, alpha_xvec, label = "GS93")
#plt.plot(xx_SHU, alpha_SHU77, label = "Shu77")
#plt.legend()
#alpha_mono_yy, alpha_quad_yy, alpha_mono_yy = yy_transform(xx_SHU, alpha_SHU77, alpha_mono_GS93, alpha_quad_GS93)
plt.figure()
plt.plot(xx_SHU, alpha_SHU77, label=r"$\alpha^{(0)}$")
plt.plot(xx_SHU, alpha_mono_GS93, label=r"$\alpha^{(2)}_0$")
plt.plot(xx_SHU, alpha_quad_GS93, label=r"$\alpha^{(2)}_2$")
plt.ylim([-5.0,5.0])
plt.legend()
plt.show()
'''
ii = 0
theta_axis = np.linspace(0.0, np.pi)
xx_theta = np.array([])
print("PIIP")
plt.figure()
for ii in range(0,xx_SHU.size):
alpha_theta = np.array([])
alpha_shuref = np.array([])
for theta in theta_axis:
rho, alpha_xvec = rho_rt(tt, xx_SHU[ii], vv_SHU77[ii], alpha_SHU77[ii], alpha_mono_GS93[ii], alpha_quad_GS93[ii])
alpha_theta = np.append(alpha_theta, alpha_xvec)
alpha_shuref = np.append(alpha_shuref, alpha_SHU77[ii])
plt.plot(alpha_theta, theta_axis, label = "GS93")
#plt.plot(alpha_shuref, theta_axis, label = "GS93")
'''
#Interpolate a mesh.
xx_SHU_GRID = np.insert(xx_SHU, 0, 0.0)
print(xx_SHU_GRID)
xx_horizontal, xx_vertical = np.meshgrid(xx_SHU_GRID, xx_SHU_GRID, indexing='xy')
theta = np.arctan2(xx_horizontal, xx_vertical)
#Take pcolormesh coordinate system into account, which marks corners instead of centre points.
dxx = np.abs(xx_horizontal[0,1] - xx_horizontal[0,0])
print(dxx)
xx_horizontal_corners = xx_horizontal - dxx/2.0
xx_vertical_corners = xx_vertical - dxx/2.0
xx_rad = np.sqrt(xx_horizontal**2.0 + xx_vertical**2.0)
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16,4))
map1 = ax[0].pcolormesh(xx_horizontal_corners, xx_vertical_corners, theta)
map2 = ax[1].pcolormesh(xx_horizontal_corners, xx_vertical_corners, xx_rad)
ax[0].set_title(r"$\theta$")
ax[1].set_title(r"$x_\mathrm{rad}$")
fig.colorbar(map1, ax=ax[0])
fig.colorbar(map2, ax=ax[1])
ax[0].set_aspect('equal', 'datalim')
ax[1].set_aspect('equal', 'datalim')
Pfig, Pax = plt.subplots(nrows=1, ncols=3, figsize=(16,4))
print("P_harmonics(theta, J=0)", P_harmonics(theta, J=0))
Pmap1 = Pax[0].pcolormesh(xx_horizontal_corners, xx_vertical_corners, P_harmonics(theta, J=0))
Pmap2 = Pax[1].pcolormesh(xx_horizontal_corners, xx_vertical_corners, P_harmonics(theta, J=2))
Pmap3 = Pax[2].pcolormesh(xx_horizontal_corners, xx_vertical_corners, deltaspace(theta, 0.5))
Pax[0].set_title(r"$P_0(\theta)$")
Pax[1].set_title(r"$P_2(\theta)$")
Pax[2].set_title(r"$\Delta(\theta, \tau = 0.5)$")
Pfig.colorbar(Pmap1, ax=Pax[0])
Pfig.colorbar(Pmap2, ax=Pax[1])
Pfig.colorbar(Pmap3, ax=Pax[2])
Pax[0].set_aspect('equal', 'datalim')
Pax[1].set_aspect('equal', 'datalim')
Pax[2].set_aspect('equal', 'datalim')
Bfig, Bax = plt.subplots(nrows=1, ncols=2, figsize=(16,4))
print("B_harmonics(theta, J=0)", B_harmonics(theta, J=0))
Bmap1 = Bax[0].pcolormesh(xx_horizontal_corners, xx_vertical_corners, B_harmonics(theta, J=0))
Bmap2 = Bax[1].pcolormesh(xx_horizontal_corners, xx_vertical_corners, B_harmonics(theta, J=2))
Bax[0].set_title(r"$B_0(\theta)$")
Bax[1].set_title(r"$B_2(\theta)$")
Bfig.colorbar(Bmap1, ax=Bax[0])
Bfig.colorbar(Bmap2, ax=Bax[1])
Bax[0].set_aspect('equal', 'datalim')
Bax[1].set_aspect('equal', 'datalim')
plt.show()
##xx_horizontal_corners = np.append(xx_horizontal_corners, (np.amax(xx_horizontal_corners)+dxx)*np.ones((xx_horizontal_corners.shape[1],1)), axis=1)
print(xx_horizontal_corners[-1,:])
print(xx_horizontal_corners)
##xx_horizontal_corners = np.vstack((xx_horizontal_corners, xx_horizontal_corners[-1,:]))
##print(xx_horizontal_corners)
##xx_vertical_corners = np.append(xx_vertical_corners, (np.amax(xx_vertical_corners)+dxx)*np.ones((1,xx_vertical_corners.shape[0])), axis=0)
print(xx_vertical_corners[:, -1])
print(xx_vertical_corners)
##xx_vertical_corners = np.hstack((xx_vertical_corners, xx_vertical_corners[:,-1]))
print(xx_vertical_corners)
numslice = 0
frametot = 201
#frametot = 101
#frametot = 11
for tt in np.linspace(0.1, ttm, num=frametot):
alpha = np.empty_like(xx_rad)
alpha77 = np.empty_like(xx_rad)
rho = np.empty_like(xx_rad)
vv_rad = np.empty_like(xx_rad)
vv_pol = np.empty_like(xx_rad)
uu_rad = np.empty_like(xx_rad)
uu_pol = np.empty_like(xx_rad)
psi = np.empty_like(xx_rad)
Vpot = np.empty_like(xx_rad)
Delta = np.empty_like(xx_rad)
Phi_flux = np.empty_like(xx_rad)
phi_vecpot = np.empty_like(xx_rad)
alpha_2_J = np.empty_like(xx_rad)
for ii in range(xx_SHU_GRID.size):
for kk in range(xx_SHU_GRID.size):
xx = xx_rad[ii,kk]
th = theta[ii,kk]
ishu = get_shu_index(xx, xx_SHU)
rho[ii, kk], alpha[ii, kk] = rho_rt(tt, xx_SHU[ishu],
vv_SHU77[ishu],
alpha_SHU77[ishu],
alpha_mono_GS93[ishu],
alpha_quad_GS93[ishu], th)
alpha77[ii, kk] = alpha_SHU77[ishu]
vv_ww_mono_point = vv_ww_mono_GS93[:, ishu]
vv_ww_quad_point = vv_ww_quad_GS93[:, ishu]
uu_dump, vv_dump = uu_rt(tt, xx_SHU[ishu], vv_SHU77[ishu], alpha_SHU77[ishu], vv_ww_mono_point, vv_ww_quad_point, th)
vv_rad[ii, kk] = vv_dump[0]
vv_pol[ii, kk] = vv_dump[1]
uu_rad[ii, kk] = uu_dump[0]
uu_pol[ii, kk] = uu_dump[1]
mm_pp_mono_point = mm_pp_mono_GS93[:, ishu]
mm_pp_quad_point = mm_pp_quad_GS93[:, ishu]
Vpot[ii, kk], psi[ii, kk] = grav_psi_rt(tt, xx_SHU[ishu], mm_SHU77[ishu], mm_pp_mono_point, mm_pp_quad_point, th)
Phi_flux[ii, kk], phi_vecpot[ii, kk] = vectorpot_rt(tt, xx_SHU[ishu], mm_SHU77[ishu], alpha_SHU77[ishu],
FF_DD_mono_GS93[:, ishu],
FF_DD_quad_GS93[:, ishu], th)
Delta[ii, kk] = deltaspace(th, get_tau(tt))
alpha_2_J[ii, kk] = alpha_mono_GS93[ishu]*P_harmonics(th, J=0) + alpha_quad_GS93[ishu]*P_harmonics(th, J=2)
vv_hor = vv_pol*np.cos(theta) + vv_rad*np.sin(theta)
vv_ver = - vv_pol*np.sin(theta) + vv_rad*np.cos(theta)
uu_hor = uu_pol*np.cos(theta) + uu_rad*np.sin(theta)
uu_ver = - uu_pol*np.sin(theta) + uu_rad*np.cos(theta)
rho77 = alpha77 * (1.0/(4.0*np.pi*G_newton)*tt) #TODO WRONG COEFFS!!!
#Apply mask
rad_mask = 0.2
alpha = np.ma.masked_where(xx_rad < rad_mask, alpha)
rho = np.ma.masked_where(xx_rad < rad_mask, rho)
vv_rad = np.ma.masked_where(xx_rad < rad_mask, vv_rad)
uu_rad = np.ma.masked_where(xx_rad < rad_mask, uu_rad)
vv_pol = np.ma.masked_where(xx_rad < rad_mask, vv_pol)
uu_pol = np.ma.masked_where(xx_rad < rad_mask, uu_pol)
vv_hor = np.ma.masked_where(xx_rad < rad_mask, vv_hor)
vv_ver = np.ma.masked_where(xx_rad < rad_mask, vv_ver)
uu_hor = np.ma.masked_where(xx_rad < rad_mask, uu_hor)
uu_ver = np.ma.masked_where(xx_rad < rad_mask, uu_ver)
psi = np.ma.masked_where(xx_rad < rad_mask, psi )
Vpot = np.ma.masked_where(xx_rad < rad_mask, Vpot)
phi_vecpot = np.ma.masked_where(xx_rad < rad_mask, phi_vecpot)
Phi_flux = np.ma.masked_where(xx_rad < rad_mask, Phi_flux )
alpha_2_J = np.ma.masked_where(xx_rad < rad_mask, alpha_2_J)
Delta = np.ma.masked_where(xx_rad < rad_mask, Delta )
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, alpha, rho,
vv_hor=vv_hor, vv_ver=vv_ver, uu_hor=uu_hor, uu_ver=uu_ver,
title1=r"\alpha", title2=r"\rho", filetitle='GS93density',
streamlines = 1, contourplot=1,
var_min=[0.00, 1e15], var_max=[16, 1e21],
normtype = 'cdensity')
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, alpha77, rho77,
#var_min=[0.00, 0], var_max=[16, 1e20],
title1=r"\alpha", title2=r"\rho", filetitle='S77density')
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, vv_rad, uu_rad,
vv_hor=vv_hor, vv_ver=vv_ver, uu_hor=uu_hor, uu_ver=uu_ver,
title1=r"v_r", title2=r"u_r", filetitle='GS93velocity_rad',
var_min=[-2.5, -2.5*cs0], var_max=[0.0, 0.0*cs0],
normtype = 'lin')
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, vv_pol, uu_pol,
vv_hor=vv_hor, vv_ver=vv_ver, uu_hor=uu_hor, uu_ver=uu_ver,
title1=r"v_\theta", title2=r"u_\theta", filetitle='GS93velocity_pol',
var_min=[0.0, 0.0*cs0], var_max=[0.5, 0.5*cs0],
normtype = 'lin')
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, psi, Vpot,
vv_hor=vv_hor, vv_ver=vv_ver, uu_hor=uu_hor, uu_ver=uu_ver,
title1=r"\psi", title2=r"V_\mathrm{pot}", filetitle='GS93gravpot',
var_min=[12.0, 12.0*(cs0**2.0)], var_max=[21.0, 21.0*(cs0**2.0)],
normtype = 'lin')
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, phi_vecpot, Phi_flux,
title1=r"\phi", title2=r"\Phi_\mathrm{flux}", filetitle='GS93vecpot',
vv_hor=vv_hor, vv_ver=vv_ver, uu_hor=uu_hor, uu_ver=uu_ver,
streamlines = 1, contourplot=1,
normtype = 'cflux')
plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, np.sqrt(vv_hor**2.0 + vv_ver**2.0), np.sqrt(uu_hor**2.0 + uu_ver**2.0),
title1=r"|v|", title2=r"|u| (cm/s)", filetitle='GS93vel2',
var_min=[0.0, 0.0*cs0], var_max=[2.5, 2.5*cs0],
vv_hor=vv_hor, vv_ver=vv_ver, uu_hor=uu_hor, uu_ver=uu_ver,
streamlines = 1,
normtype = 'lin')
##plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, Delta, Delta,
## title1=r"\Delta", title2=r"\Delta", filetitle='Delta',
## normtype = 'lin')
##plot_figure(tt, xx_horizontal_corners, xx_vertical_corners, xx_horizontal, xx_vertical, alpha_2_J, alpha_2_J,
## title1=r"\sum \alpha^{(2)}_J", title2=r"\sum \alpha^{(2)}_J", filetitle='alpha_2_J',
## normtype = 'lin')
numslice += 1