Files
astaroth/samples/bwtest/main.c
2020-05-30 20:23:53 +03:00

489 lines
16 KiB
C

#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <cuda_runtime_api.h>
#include "timer_hires.h" // From src/common
//#define BLOCK_SIZE (100 * 1024 * 1024) // Bytes
#define BLOCK_SIZE (256 * 256 * 3 * 8 * 8)
#define errchk(x) { if (!(x)) { fprintf(stderr, "errchk(%s) failed", #x); assert(x); }}
/*
Findings:
- MUST ALWAYS SET DEVICE. Absolutely kills performance if device is not set explicitly
- Need to use cudaMalloc for intranode comm for P2P to trigger with MPI
- For internode one should use pinned memory (RDMA is staged through pinned, gives full
network speed iff pinned)
- Both the sending and receiving arrays must be pinned to see performance improvement
in internode comm
*/
static uint8_t*
allocHost(const size_t bytes)
{
uint8_t* arr = malloc(bytes);
errchk(arr);
return arr;
}
static void
freeHost(uint8_t* arr)
{
free(arr);
}
static uint8_t*
allocDevice(const size_t bytes)
{
uint8_t* arr;
// Standard (20 GiB/s internode, 85 GiB/s intranode)
const cudaError_t retval = cudaMalloc((void**)&arr, bytes);
// Unified mem (5 GiB/s internode, 6 GiB/s intranode)
// const cudaError_t retval = cudaMallocManaged((void**)&arr, bytes, cudaMemAttachGlobal);
// Pinned (40 GiB/s internode, 10 GiB/s intranode)
// const cudaError_t retval = cudaMallocHost((void**)&arr, bytes);
errchk(retval == cudaSuccess);
return arr;
}
static uint8_t*
allocDevicePinned(const size_t bytes)
{
uint8_t* arr;
// Standard (20 GiB/s internode, 85 GiB/s intranode)
// const cudaError_t retval = cudaMalloc((void**)&arr, bytes);
// Unified mem (5 GiB/s internode, 6 GiB/s intranode)
// const cudaError_t retval = cudaMallocManaged((void**)&arr, bytes, cudaMemAttachGlobal);
// Pinned (40 GiB/s internode, 10 GiB/s intranode)
const cudaError_t retval = cudaMallocHost((void**)&arr, bytes);
errchk(retval == cudaSuccess);
return arr;
}
static void
freeDevice(uint8_t* arr)
{
cudaFree(arr);
}
static void
sendrecv_blocking(uint8_t* src, uint8_t* dst)
{
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
int nfront = (pid + 1) % nprocs;
int nback = (((pid - 1) % nprocs) + nprocs) % nprocs;
if (!pid) {
MPI_Status status;
MPI_Send(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, MPI_COMM_WORLD);
MPI_Recv(dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &status);
}
else {
MPI_Status status;
MPI_Recv(dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &status);
MPI_Send(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, MPI_COMM_WORLD);
}
}
static void
sendrecv_nonblocking(uint8_t* src, uint8_t* dst)
{
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
int nfront = (pid + 1) % nprocs;
int nback = (((pid - 1) % nprocs) + nprocs) % nprocs;
MPI_Request recv_request, send_request;
MPI_Irecv(dst, BLOCK_SIZE, MPI_BYTE, nback, nback, MPI_COMM_WORLD, &recv_request);
MPI_Isend(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, MPI_COMM_WORLD, &send_request);
MPI_Status status;
MPI_Wait(&recv_request, &status);
MPI_Wait(&send_request, &status);
}
static void
sendrecv_twoway(uint8_t* src, uint8_t* dst)
{
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
int nfront = (pid + 1) % nprocs;
int nback = (((pid - 1) % nprocs) + nprocs) % nprocs;
MPI_Status status;
MPI_Sendrecv(src, BLOCK_SIZE, MPI_BYTE, nfront, pid, dst, BLOCK_SIZE, MPI_BYTE, nback, nback,
MPI_COMM_WORLD, &status);
}
static void
sendrecv_nonblocking_multiple(uint8_t* src, uint8_t* dst)
{
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Request recv_requests[nprocs], send_requests[nprocs];
for (int i = 1; i < nprocs; ++i) {
int nfront = (pid + i) % nprocs;
int nback = (((pid - i) % nprocs) + nprocs) % nprocs;
MPI_Irecv(dst, BLOCK_SIZE, MPI_BYTE, nback, pid, MPI_COMM_WORLD, &recv_requests[i]);
MPI_Isend(src, BLOCK_SIZE, MPI_BYTE, nfront, nfront, MPI_COMM_WORLD, &send_requests[i]);
}
for (int i = 1; i < nprocs; ++i) {
MPI_Status status;
MPI_Wait(&recv_requests[i], &status);
MPI_Wait(&send_requests[i], &status);
}
}
/*
static void
sendrecv_nonblocking_multiple_parallel(uint8_t* src, uint8_t* dst)
{
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Request send_requests[nprocs];
for (int i = 1; i < nprocs; ++i) {
int nfront = (pid + i) % nprocs;
MPI_Isend(src, BLOCK_SIZE, MPI_BYTE, nfront, nfront, MPI_COMM_WORLD, &send_requests[i]);
}
static bool error_shown = false;
if (!pid && !error_shown) {
fprintf(stderr, "\tWARNING: make sure you init MPI_Init_thread for OpenMP support (no "
"supported on puhti atm "
"2020-04-05\n");
error_shown = true;
}
#pragma omp parallel for
for (int i = 1; i < nprocs; ++i) {
int nback = (((pid - i) % nprocs) + nprocs) % nprocs;
MPI_Status status;
MPI_Recv(dst, BLOCK_SIZE, MPI_BYTE, nback, pid, MPI_COMM_WORLD, &status);
}
for (int i = 1; i < nprocs; ++i) {
MPI_Status status;
MPI_Wait(&send_requests[i], &status);
}
}
*/
static void
sendrecv_nonblocking_multiple_rt_pinning(uint8_t* src, uint8_t* dst)
{
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
static uint8_t* src_pinned = NULL;
static uint8_t* dst_pinned = NULL;
if (!src_pinned)
src_pinned = allocDevicePinned(BLOCK_SIZE); // Note: Never freed
if (!dst_pinned)
dst_pinned = allocDevicePinned(BLOCK_SIZE); // Note: Never freed
int devices_per_node = -1;
cudaGetDeviceCount(&devices_per_node);
MPI_Request recv_requests[nprocs], send_requests[nprocs];
for (int i = 1; i < nprocs; ++i) {
int nfront = (pid + i) % nprocs;
int nback = (((pid - i) % nprocs) + nprocs) % nprocs;
if (nback / devices_per_node != pid / devices_per_node) // Not on the same node
MPI_Irecv(dst_pinned, BLOCK_SIZE, MPI_BYTE, nback, pid, MPI_COMM_WORLD,
&recv_requests[i]);
else
MPI_Irecv(dst, BLOCK_SIZE, MPI_BYTE, nback, pid, MPI_COMM_WORLD, &recv_requests[i]);
if (nfront / devices_per_node != pid / devices_per_node) // Not on the same node
MPI_Isend(src_pinned, BLOCK_SIZE, MPI_BYTE, nfront, nfront, MPI_COMM_WORLD,
&send_requests[i]);
else
MPI_Isend(src, BLOCK_SIZE, MPI_BYTE, nfront, nfront, MPI_COMM_WORLD, &send_requests[i]);
}
for (int i = 1; i < nprocs; ++i) {
MPI_Status status;
MPI_Wait(&recv_requests[i], &status);
MPI_Wait(&send_requests[i], &status);
}
}
static void
send_d2h(uint8_t* src, uint8_t* dst)
{
cudaMemcpy(dst, src, BLOCK_SIZE, cudaMemcpyDeviceToHost);
}
static void
send_h2d(uint8_t* src, uint8_t* dst)
{
cudaMemcpy(dst, src, BLOCK_SIZE, cudaMemcpyHostToDevice);
}
static void
sendrecv_d2h2d(uint8_t* dsrc, uint8_t* hdst, uint8_t* hsrc, uint8_t* ddst)
{
cudaStream_t d2h, h2d;
cudaStreamCreate(&d2h);
cudaStreamCreate(&h2d);
cudaMemcpyAsync(hdst, dsrc, BLOCK_SIZE, cudaMemcpyDeviceToHost, d2h);
cudaMemcpyAsync(ddst, hsrc, BLOCK_SIZE, cudaMemcpyHostToDevice, h2d);
cudaStreamSynchronize(d2h);
cudaStreamSynchronize(h2d);
cudaStreamDestroy(d2h);
cudaStreamDestroy(h2d);
}
#define PRINT \
if (!pid) \
printf
static void
measurebw(const char* msg, const size_t bytes, void (*sendrecv)(uint8_t*, uint8_t*), uint8_t* src,
uint8_t* dst)
{
const size_t num_samples = 100;
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
PRINT("%s\n", msg);
MPI_Barrier(MPI_COMM_WORLD);
PRINT("\tWarming up... ");
for (size_t i = 0; i < num_samples / 10; ++i)
sendrecv(src, dst);
MPI_Barrier(MPI_COMM_WORLD);
PRINT("Done\n");
PRINT("\tBandwidth... ");
fflush(stdout);
Timer t;
MPI_Barrier(MPI_COMM_WORLD);
timer_reset(&t);
MPI_Barrier(MPI_COMM_WORLD);
for (size_t i = 0; i < num_samples; ++i)
sendrecv(src, dst);
MPI_Barrier(MPI_COMM_WORLD);
const long double time_elapsed = timer_diff_nsec(t) / 1e9l; // seconds
PRINT("%Lg GiB/s\n", num_samples * bytes / time_elapsed / (1024 * 1024 * 1024));
PRINT("\tTransfer time: %Lg ms\n", time_elapsed * 1000 / num_samples);
MPI_Barrier(MPI_COMM_WORLD);
}
static void
measurebw2(const char* msg, const size_t bytes, void (*sendrecv)(uint8_t*, uint8_t*, uint8_t*, uint8_t*), uint8_t* dsrc, uint8_t* hdst,
uint8_t* hsrc, uint8_t* ddst)
{
const size_t num_samples = 100;
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
PRINT("%s\n", msg);
MPI_Barrier(MPI_COMM_WORLD);
PRINT("\tWarming up... ");
for (size_t i = 0; i < num_samples / 10; ++i)
sendrecv(dsrc, hdst, hsrc, ddst);
MPI_Barrier(MPI_COMM_WORLD);
PRINT("Done\n");
PRINT("\tBandwidth... ");
fflush(stdout);
Timer t;
MPI_Barrier(MPI_COMM_WORLD);
timer_reset(&t);
MPI_Barrier(MPI_COMM_WORLD);
for (size_t i = 0; i < num_samples; ++i)
sendrecv(dsrc, hdst, hsrc, ddst);
MPI_Barrier(MPI_COMM_WORLD);
const long double time_elapsed = timer_diff_nsec(t) / 1e9l; // seconds
PRINT("%Lg GiB/s\n", num_samples * bytes / time_elapsed / (1024 * 1024 * 1024));
PRINT("\tTransfer time: %Lg ms\n", time_elapsed * 1000 / num_samples);
MPI_Barrier(MPI_COMM_WORLD);
}
int
main(void)
{
MPI_Init(NULL, NULL);
// int provided;
// MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);
// errchk(provided >= MPI_THREAD_MULTIPLE);
// Disable stdout buffering
setbuf(stdout, NULL);
int pid, nprocs;
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
errchk(nprocs >= 2); // Require at least one neighbor
MPI_Barrier(MPI_COMM_WORLD);
if (!pid) {
printf("Do we have threads? The following should not be ordered (unless very lucky)\n");
#pragma omp parallel for
for (int i = 0; i < 10; ++i)
printf("%d, ", i);
printf("\n");
}
MPI_Barrier(MPI_COMM_WORLD);
int devices_per_node = -1;
cudaGetDeviceCount(&devices_per_node);
const int device_id = pid % devices_per_node;
cudaSetDevice(device_id);
printf("Process %d of %d running.\n", pid, nprocs);
MPI_Barrier(MPI_COMM_WORLD);
PRINT("Block size: %u MiB\n", BLOCK_SIZE / (1024 * 1024));
#if 1
{
uint8_t* src = allocHost(BLOCK_SIZE);
uint8_t* dst = allocHost(BLOCK_SIZE);
measurebw("Unidirectional bandwidth, blocking (Host)", //
2 * BLOCK_SIZE, sendrecv_blocking, src, dst);
measurebw("Bidirectional bandwidth, async (Host)", //
2 * BLOCK_SIZE, sendrecv_nonblocking, src, dst);
measurebw("Bidirectional bandwidth, twoway (Host)", //
2 * BLOCK_SIZE, sendrecv_twoway, src, dst);
measurebw("Bidirectional bandwidth, async multiple (Host)", //
2 * (nprocs-1) * BLOCK_SIZE, sendrecv_nonblocking_multiple, src, dst);
//measurebw("Bidirectional bandwidth, async multiple parallel (Host)", //
// 2 * (nprocs-1) * BLOCK_SIZE, sendrecv_nonblocking_multiple_parallel, src, dst);
freeHost(src);
freeHost(dst);
}
PRINT("\n------------------------\n");
{
uint8_t* src = allocDevice(BLOCK_SIZE);
uint8_t* dst = allocDevice(BLOCK_SIZE);
measurebw("Unidirectional bandwidth, blocking (Device)", //
2 * BLOCK_SIZE, sendrecv_blocking, src, dst);
measurebw("Bidirectional bandwidth, async (Device)", //
2 * BLOCK_SIZE, sendrecv_nonblocking, src, dst);
measurebw("Bidirectional bandwidth, twoway (Device)", //
2 * BLOCK_SIZE, sendrecv_twoway, src, dst);
measurebw("Bidirectional bandwidth, async multiple (Device)", //
2 * (nprocs-1) *BLOCK_SIZE, sendrecv_nonblocking_multiple, src, dst);
//measurebw("Bidirectional bandwidth, async multiple parallel (Device)", //
// 2 * (nprocs-1) *BLOCK_SIZE, sendrecv_nonblocking_multiple_parallel, src, dst);
measurebw("Bidirectional bandwidth, async multiple (Device, rt pinning)", //
2 * (nprocs-1) *BLOCK_SIZE, sendrecv_nonblocking_multiple_rt_pinning, src, dst);
freeDevice(src);
freeDevice(dst);
}
PRINT("\n------------------------\n");
{
uint8_t* src = allocDevicePinned(BLOCK_SIZE);
uint8_t* dst = allocDevicePinned(BLOCK_SIZE);
measurebw("Unidirectional bandwidth, blocking (Device, pinned)", //
2 * BLOCK_SIZE, sendrecv_blocking, src, dst);
measurebw("Bidirectional bandwidth, async (Device, pinned)", //
2 * BLOCK_SIZE, sendrecv_nonblocking, src, dst);
measurebw("Bidirectional bandwidth, twoway (Device, pinned)", //
2 * BLOCK_SIZE, sendrecv_twoway, src, dst);
measurebw("Bidirectional bandwidth, async multiple (Device, pinned)", //
2 * (nprocs-1) *BLOCK_SIZE, sendrecv_nonblocking_multiple, src, dst);
freeDevice(src);
freeDevice(dst);
}
PRINT("\n------------------------\n");
{
uint8_t* hsrc = allocHost(BLOCK_SIZE);
uint8_t* hdst = allocHost(BLOCK_SIZE);
uint8_t* dsrc = allocDevice(BLOCK_SIZE);
uint8_t* ddst = allocDevice(BLOCK_SIZE);
measurebw("Unidirectional D2H", BLOCK_SIZE, send_d2h, dsrc, hdst);
measurebw("Unidirectional H2D", BLOCK_SIZE, send_h2d, hsrc, ddst);
measurebw2("Bidirectional D2H & H2D", 2 * BLOCK_SIZE, sendrecv_d2h2d, dsrc, hdst, hsrc, ddst);
freeDevice(dsrc);
freeDevice(ddst);
freeHost(hsrc);
freeHost(hdst);
}
PRINT("\n------------------------\n");
{
uint8_t* hsrc = allocHost(BLOCK_SIZE);
uint8_t* hdst = allocHost(BLOCK_SIZE);
uint8_t* dsrc = allocDevicePinned(BLOCK_SIZE);
uint8_t* ddst = allocDevicePinned(BLOCK_SIZE);
measurebw("Unidirectional D2H (pinned)", BLOCK_SIZE, send_d2h, dsrc, hdst);
measurebw("Unidirectional H2D (pinned)", BLOCK_SIZE, send_h2d, hsrc, ddst);
measurebw2("Bidirectional D2H & H2D (pinned)", 2 * BLOCK_SIZE, sendrecv_d2h2d, dsrc, hdst, hsrc, ddst);
freeDevice(dsrc);
freeDevice(ddst);
freeHost(hsrc);
freeHost(hdst);
}
PRINT("\n------------------------\n");
#else
{ // Final run for easy identification with the profiler
uint8_t* src = allocDevice(BLOCK_SIZE);
uint8_t* dst = allocDevice(BLOCK_SIZE);
measurebw("Bidirectional bandwidth, async multiple (Device, rt pinning)", //
2 * BLOCK_SIZE, sendrecv_nonblocking_multiple_rt_pinning, src, dst);
freeDevice(src);
freeDevice(dst);
}
#endif
MPI_Finalize();
return EXIT_SUCCESS;
}