1706 lines
59 KiB
C++
1706 lines
59 KiB
C++
#include "astaroth.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include "astaroth_utils.h"
|
|
#include "errchk.h"
|
|
#include "math_utils.h"
|
|
#include "timer_hires.h"
|
|
|
|
#include "kernels/kernels.h"
|
|
|
|
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
|
|
#define MPI_GPUDIRECT_DISABLED (0)
|
|
|
|
AcResult
|
|
acDevicePrintInfo(const Device device)
|
|
{
|
|
const int device_id = device->id;
|
|
|
|
cudaDeviceProp props;
|
|
cudaGetDeviceProperties(&props, device_id);
|
|
printf("--------------------------------------------------\n");
|
|
printf("Device Number: %d\n", device_id);
|
|
const size_t bus_id_max_len = 128;
|
|
char bus_id[bus_id_max_len];
|
|
cudaDeviceGetPCIBusId(bus_id, bus_id_max_len, device_id);
|
|
printf(" PCI bus ID: %s\n", bus_id);
|
|
printf(" Device name: %s\n", props.name);
|
|
printf(" Compute capability: %d.%d\n", props.major, props.minor);
|
|
|
|
// Compute
|
|
printf(" Compute\n");
|
|
printf(" Clock rate (GHz): %g\n", props.clockRate / 1e6); // KHz -> GHz
|
|
printf(" Stream processors: %d\n", props.multiProcessorCount);
|
|
printf(" SP to DP flops performance ratio: %d:1\n", props.singleToDoublePrecisionPerfRatio);
|
|
printf(
|
|
" Compute mode: %d\n",
|
|
(int)props
|
|
.computeMode); // https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g7eb25f5413a962faad0956d92bae10d0
|
|
// Memory
|
|
printf(" Global memory\n");
|
|
printf(" Memory Clock Rate (MHz): %d\n", props.memoryClockRate / (1000));
|
|
printf(" Memory Bus Width (bits): %d\n", props.memoryBusWidth);
|
|
printf(" Peak Memory Bandwidth (GiB/s): %f\n",
|
|
2 * (props.memoryClockRate * 1e3) * props.memoryBusWidth / (8. * 1024. * 1024. * 1024.));
|
|
printf(" ECC enabled: %d\n", props.ECCEnabled);
|
|
|
|
// Memory usage
|
|
size_t free_bytes, total_bytes;
|
|
cudaMemGetInfo(&free_bytes, &total_bytes);
|
|
const size_t used_bytes = total_bytes - free_bytes;
|
|
printf(" Total global mem: %.2f GiB\n", props.totalGlobalMem / (1024.0 * 1024 * 1024));
|
|
printf(" Gmem used (GiB): %.2f\n", used_bytes / (1024.0 * 1024 * 1024));
|
|
printf(" Gmem memory free (GiB): %.2f\n", free_bytes / (1024.0 * 1024 * 1024));
|
|
printf(" Gmem memory total (GiB): %.2f\n", total_bytes / (1024.0 * 1024 * 1024));
|
|
printf(" Caches\n");
|
|
printf(" Local L1 cache supported: %d\n", props.localL1CacheSupported);
|
|
printf(" Global L1 cache supported: %d\n", props.globalL1CacheSupported);
|
|
printf(" L2 size: %d KiB\n", props.l2CacheSize / (1024));
|
|
// MV: props.totalConstMem and props.sharedMemPerBlock cause assembler error
|
|
// MV: while compiling in TIARA gp cluster. Therefore commeted out.
|
|
//!! printf(" Total const mem: %ld KiB\n", props.totalConstMem / (1024));
|
|
//!! printf(" Shared mem per block: %ld KiB\n", props.sharedMemPerBlock / (1024));
|
|
printf(" Other\n");
|
|
printf(" Warp size: %d\n", props.warpSize);
|
|
// printf(" Single to double perf. ratio: %dx\n",
|
|
// props.singleToDoublePrecisionPerfRatio); //Not supported with older CUDA
|
|
// versions
|
|
printf(" Stream priorities supported: %d\n", props.streamPrioritiesSupported);
|
|
printf("--------------------------------------------------\n");
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceAutoOptimize(const Device device)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
const int3 start = (int3){
|
|
device->local_config.int_params[AC_nx_min],
|
|
device->local_config.int_params[AC_ny_min],
|
|
device->local_config.int_params[AC_nz_min],
|
|
};
|
|
const int3 end = (int3){
|
|
device->local_config.int_params[AC_nx_max],
|
|
device->local_config.int_params[AC_ny_max],
|
|
device->local_config.int_params[AC_nz_max],
|
|
};
|
|
return acKernelAutoOptimizeIntegration(start, end, device->vba);
|
|
}
|
|
|
|
AcResult
|
|
acDeviceSynchronizeStream(const Device device, const Stream stream)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
if (stream == STREAM_ALL) {
|
|
cudaDeviceSynchronize();
|
|
}
|
|
else {
|
|
cudaStreamSynchronize(device->streams[stream]);
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceCreate(const int id, const AcMeshInfo device_config, Device* device_handle)
|
|
{
|
|
cudaSetDevice(id);
|
|
// cudaDeviceReset(); // Would be good for safety, but messes stuff up if we want to emulate
|
|
// multiple devices with a single GPU
|
|
|
|
// Create Device
|
|
struct device_s* device = (struct device_s*)malloc(sizeof(*device));
|
|
ERRCHK_ALWAYS(device);
|
|
|
|
device->id = id;
|
|
device->local_config = device_config;
|
|
acDevicePrintInfo(device);
|
|
|
|
// Check that the code was compiled for the proper GPU architecture
|
|
printf("Trying to run a dummy kernel. If this fails, make sure that your\n"
|
|
"device supports the CUDA architecture you are compiling for.\n"
|
|
"Running dummy kernel... ");
|
|
fflush(stdout);
|
|
acKernelDummy();
|
|
printf("Success!\n");
|
|
|
|
// Concurrency
|
|
for (int i = 0; i < NUM_STREAMS; ++i) {
|
|
cudaStreamCreateWithPriority(&device->streams[i], cudaStreamNonBlocking, i);
|
|
}
|
|
|
|
// Memory
|
|
// VBA in/out
|
|
const size_t vba_size_bytes = acVertexBufferSizeBytes(device_config);
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&device->vba.in[i], vba_size_bytes));
|
|
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&device->vba.out[i], vba_size_bytes));
|
|
}
|
|
// VBA Profiles
|
|
const size_t profile_size_bytes = sizeof(AcReal) * max(device_config.int_params[AC_mx],
|
|
max(device_config.int_params[AC_my],
|
|
device_config.int_params[AC_mz]));
|
|
for (int i = 0; i < NUM_SCALARARRAY_HANDLES; ++i) {
|
|
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&device->vba.profiles[i], profile_size_bytes));
|
|
}
|
|
|
|
// Reductions
|
|
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&device->reduce_scratchpad,
|
|
acVertexBufferCompdomainSizeBytes(device_config)));
|
|
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&device->reduce_result, sizeof(AcReal)));
|
|
|
|
// Device constants
|
|
acDeviceLoadDefaultUniforms(device);
|
|
acDeviceLoadMeshInfo(device, device_config);
|
|
|
|
printf("Created device %d (%p)\n", device->id, device);
|
|
*device_handle = device;
|
|
|
|
// Autoptimize
|
|
if (id == 0) {
|
|
acDeviceAutoOptimize(device);
|
|
}
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceDestroy(Device device)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
printf("Destroying device %d (%p)\n", device->id, device);
|
|
acDeviceSynchronizeStream(device, STREAM_ALL);
|
|
|
|
// Memory
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
cudaFree(device->vba.in[i]);
|
|
cudaFree(device->vba.out[i]);
|
|
}
|
|
for (int i = 0; i < NUM_SCALARARRAY_HANDLES; ++i) {
|
|
cudaFree(device->vba.profiles[i]);
|
|
}
|
|
|
|
cudaFree(device->reduce_scratchpad);
|
|
cudaFree(device->reduce_result);
|
|
|
|
// Concurrency
|
|
for (int i = 0; i < NUM_STREAMS; ++i) {
|
|
cudaStreamDestroy(device->streams[i]);
|
|
}
|
|
|
|
// Destroy Device
|
|
free(device);
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceSwapBuffers(const Device device)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
AcReal* tmp = device->vba.in[i];
|
|
device->vba.in[i] = device->vba.out[i];
|
|
device->vba.out[i] = tmp;
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceLoadScalarArray(const Device device, const Stream stream, const ScalarArrayHandle handle,
|
|
const size_t start, const AcReal* data, const size_t num)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
if (handle >= NUM_SCALARARRAY_HANDLES || !NUM_SCALARARRAY_HANDLES)
|
|
return AC_FAILURE;
|
|
|
|
ERRCHK((int)(start + num) <= max(device->local_config.int_params[AC_mx],
|
|
max(device->local_config.int_params[AC_my],
|
|
device->local_config.int_params[AC_mz])));
|
|
ERRCHK_ALWAYS(handle < NUM_SCALARARRAY_HANDLES);
|
|
ERRCHK_CUDA(cudaMemcpyAsync(&device->vba.profiles[handle][start], data, sizeof(data[0]) * num,
|
|
cudaMemcpyHostToDevice, device->streams[stream]));
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceLoadVertexBufferWithOffset(const Device device, const Stream stream, const AcMesh host_mesh,
|
|
const VertexBufferHandle vtxbuf_handle, const int3 src,
|
|
const int3 dst, const int num_vertices)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
const size_t src_idx = acVertexBufferIdx(src.x, src.y, src.z, host_mesh.info);
|
|
const size_t dst_idx = acVertexBufferIdx(dst.x, dst.y, dst.z, device->local_config);
|
|
|
|
const AcReal* src_ptr = &host_mesh.vertex_buffer[vtxbuf_handle][src_idx];
|
|
AcReal* dst_ptr = &device->vba.in[vtxbuf_handle][dst_idx];
|
|
const size_t bytes = num_vertices * sizeof(src_ptr[0]);
|
|
|
|
ERRCHK_CUDA( //
|
|
cudaMemcpyAsync(dst_ptr, src_ptr, bytes, cudaMemcpyHostToDevice, device->streams[stream]) //
|
|
);
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceLoadMeshWithOffset(const Device device, const Stream stream, const AcMesh host_mesh,
|
|
const int3 src, const int3 dst, const int num_vertices)
|
|
{
|
|
WARNING("This function is deprecated");
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDeviceLoadVertexBufferWithOffset(device, stream, host_mesh, (VertexBufferHandle)i, src,
|
|
dst, num_vertices);
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceLoadVertexBuffer(const Device device, const Stream stream, const AcMesh host_mesh,
|
|
const VertexBufferHandle vtxbuf_handle)
|
|
{
|
|
const int3 src = (int3){0, 0, 0};
|
|
const int3 dst = src;
|
|
const size_t num_vertices = acVertexBufferSize(device->local_config);
|
|
acDeviceLoadVertexBufferWithOffset(device, stream, host_mesh, vtxbuf_handle, src, dst,
|
|
num_vertices);
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceLoadMesh(const Device device, const Stream stream, const AcMesh host_mesh)
|
|
{
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDeviceLoadVertexBuffer(device, stream, host_mesh, (VertexBufferHandle)i);
|
|
}
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceStoreVertexBufferWithOffset(const Device device, const Stream stream,
|
|
const VertexBufferHandle vtxbuf_handle, const int3 src,
|
|
const int3 dst, const int num_vertices, AcMesh* host_mesh)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
const size_t src_idx = acVertexBufferIdx(src.x, src.y, src.z, device->local_config);
|
|
const size_t dst_idx = acVertexBufferIdx(dst.x, dst.y, dst.z, host_mesh->info);
|
|
|
|
const AcReal* src_ptr = &device->vba.in[vtxbuf_handle][src_idx];
|
|
AcReal* dst_ptr = &host_mesh->vertex_buffer[vtxbuf_handle][dst_idx];
|
|
const size_t bytes = num_vertices * sizeof(src_ptr[0]);
|
|
|
|
ERRCHK_CUDA( //
|
|
cudaMemcpyAsync(dst_ptr, src_ptr, bytes, cudaMemcpyDeviceToHost, device->streams[stream]) //
|
|
);
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceStoreMeshWithOffset(const Device device, const Stream stream, const int3 src,
|
|
const int3 dst, const int num_vertices, AcMesh* host_mesh)
|
|
{
|
|
WARNING("This function is deprecated");
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDeviceStoreVertexBufferWithOffset(device, stream, (VertexBufferHandle)i, src, dst,
|
|
num_vertices, host_mesh);
|
|
}
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceStoreVertexBuffer(const Device device, const Stream stream,
|
|
const VertexBufferHandle vtxbuf_handle, AcMesh* host_mesh)
|
|
{
|
|
int3 src = (int3){0, 0, 0};
|
|
int3 dst = src;
|
|
const size_t num_vertices = acVertexBufferSize(device->local_config);
|
|
|
|
acDeviceStoreVertexBufferWithOffset(device, stream, vtxbuf_handle, src, dst, num_vertices,
|
|
host_mesh);
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceStoreMesh(const Device device, const Stream stream, AcMesh* host_mesh)
|
|
{
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDeviceStoreVertexBuffer(device, stream, (VertexBufferHandle)i, host_mesh);
|
|
}
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceTransferVertexBufferWithOffset(const Device src_device, const Stream stream,
|
|
const VertexBufferHandle vtxbuf_handle, const int3 src,
|
|
const int3 dst, const int num_vertices, Device dst_device)
|
|
{
|
|
cudaSetDevice(src_device->id);
|
|
const size_t src_idx = acVertexBufferIdx(src.x, src.y, src.z, src_device->local_config);
|
|
const size_t dst_idx = acVertexBufferIdx(dst.x, dst.y, dst.z, dst_device->local_config);
|
|
|
|
const AcReal* src_ptr = &src_device->vba.in[vtxbuf_handle][src_idx];
|
|
AcReal* dst_ptr = &dst_device->vba.in[vtxbuf_handle][dst_idx];
|
|
const size_t bytes = num_vertices * sizeof(src_ptr[0]);
|
|
|
|
ERRCHK_CUDA(cudaMemcpyPeerAsync(dst_ptr, dst_device->id, src_ptr, src_device->id, bytes,
|
|
src_device->streams[stream]));
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceTransferMeshWithOffset(const Device src_device, const Stream stream, const int3 src,
|
|
const int3 dst, const int num_vertices, Device dst_device)
|
|
{
|
|
WARNING("This function is deprecated");
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDeviceTransferVertexBufferWithOffset(src_device, stream, (VertexBufferHandle)i, src, dst,
|
|
num_vertices, dst_device);
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceTransferVertexBuffer(const Device src_device, const Stream stream,
|
|
const VertexBufferHandle vtxbuf_handle, Device dst_device)
|
|
{
|
|
int3 src = (int3){0, 0, 0};
|
|
int3 dst = src;
|
|
const size_t num_vertices = acVertexBufferSize(src_device->local_config);
|
|
|
|
acDeviceTransferVertexBufferWithOffset(src_device, stream, vtxbuf_handle, src, dst,
|
|
num_vertices, dst_device);
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceTransferMesh(const Device src_device, const Stream stream, Device dst_device)
|
|
{
|
|
WARNING("This function is deprecated");
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDeviceTransferVertexBuffer(src_device, stream, (VertexBufferHandle)i, dst_device);
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceIntegrateSubstep(const Device device, const Stream stream, const int step_number,
|
|
const int3 start, const int3 end, const AcReal dt)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
acDeviceLoadScalarUniform(device, stream, AC_dt, dt);
|
|
return acKernelIntegrateSubstep(device->streams[stream], step_number, start, end, device->vba);
|
|
}
|
|
|
|
AcResult
|
|
acDevicePeriodicBoundcondStep(const Device device, const Stream stream,
|
|
const VertexBufferHandle vtxbuf_handle, const int3 start,
|
|
const int3 end)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
return acKernelPeriodicBoundconds(device->streams[stream], start, end,
|
|
device->vba.in[vtxbuf_handle]);
|
|
}
|
|
|
|
AcResult
|
|
acDevicePeriodicBoundconds(const Device device, const Stream stream, const int3 start,
|
|
const int3 end)
|
|
{
|
|
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
|
|
acDevicePeriodicBoundcondStep(device, stream, (VertexBufferHandle)i, start, end);
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceReduceScal(const Device device, const Stream stream, const ReductionType rtype,
|
|
const VertexBufferHandle vtxbuf_handle, AcReal* result)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
const int3 start = (int3){device->local_config.int_params[AC_nx_min],
|
|
device->local_config.int_params[AC_ny_min],
|
|
device->local_config.int_params[AC_nz_min]};
|
|
|
|
const int3 end = (int3){device->local_config.int_params[AC_nx_max],
|
|
device->local_config.int_params[AC_ny_max],
|
|
device->local_config.int_params[AC_nz_max]};
|
|
|
|
*result = acKernelReduceScal(device->streams[stream], rtype, start, end,
|
|
device->vba.in[vtxbuf_handle], device->reduce_scratchpad,
|
|
device->reduce_result);
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
AcResult
|
|
acDeviceReduceVec(const Device device, const Stream stream, const ReductionType rtype,
|
|
const VertexBufferHandle vtxbuf0, const VertexBufferHandle vtxbuf1,
|
|
const VertexBufferHandle vtxbuf2, AcReal* result)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
const int3 start = (int3){device->local_config.int_params[AC_nx_min],
|
|
device->local_config.int_params[AC_ny_min],
|
|
device->local_config.int_params[AC_nz_min]};
|
|
|
|
const int3 end = (int3){device->local_config.int_params[AC_nx_max],
|
|
device->local_config.int_params[AC_ny_max],
|
|
device->local_config.int_params[AC_nz_max]};
|
|
|
|
*result = acKernelReduceVec(device->streams[stream], rtype, start, end, device->vba.in[vtxbuf0],
|
|
device->vba.in[vtxbuf1], device->vba.in[vtxbuf2],
|
|
device->reduce_scratchpad, device->reduce_result);
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
#if AC_MPI_ENABLED
|
|
#include <mpi.h>
|
|
|
|
static int
|
|
mod(const int a, const int b)
|
|
{
|
|
const int r = a % b;
|
|
return r < 0 ? r + b : r;
|
|
}
|
|
|
|
static int
|
|
getPid(const int3 pid, const int3 decomposition)
|
|
{
|
|
return mod(pid.x, decomposition.x) + //
|
|
mod(pid.y, decomposition.y) * decomposition.x + //
|
|
mod(pid.z, decomposition.z) * decomposition.x * decomposition.y;
|
|
}
|
|
|
|
static int3
|
|
getPid3D(const int pid, const int3 decomposition)
|
|
{
|
|
const int3 pid3d = (int3){
|
|
mod(pid, decomposition.x),
|
|
mod(pid / decomposition.x, decomposition.y),
|
|
(pid / (decomposition.x * decomposition.y)),
|
|
};
|
|
return pid3d;
|
|
}
|
|
|
|
static int3
|
|
decompose(const int target)
|
|
{
|
|
int decomposition[] = {1, 1, 1};
|
|
|
|
int axis = 0;
|
|
while (decomposition[0] * decomposition[1] * decomposition[2] < target) {
|
|
++decomposition[axis];
|
|
axis = (axis + 1) % 3;
|
|
}
|
|
|
|
const int found = decomposition[0] * decomposition[1] * decomposition[2];
|
|
if (found != target) {
|
|
fprintf(stderr, "Invalid number of processes! Cannot decompose the problem domain!\n");
|
|
fprintf(stderr, "Target nprocs: %d. Next allowed: %d\n", target, found);
|
|
ERROR("Invalid nprocs");
|
|
return (int3){-1, -1, -1};
|
|
}
|
|
else {
|
|
return (int3){decomposition[0], decomposition[1], decomposition[2]};
|
|
}
|
|
}
|
|
|
|
static PackedData
|
|
acCreatePackedData(const int3 dims)
|
|
{
|
|
PackedData data = {};
|
|
|
|
data.dims = dims;
|
|
|
|
const size_t bytes = dims.x * dims.y * dims.z * sizeof(data.data[0]) * NUM_VTXBUF_HANDLES;
|
|
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&data.data, bytes));
|
|
|
|
return data;
|
|
}
|
|
|
|
static AcResult
|
|
acDestroyPackedData(PackedData* data)
|
|
{
|
|
data->dims = (int3){-1, -1, -1};
|
|
cudaFree(data->data);
|
|
data->data = NULL;
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
static PackedData
|
|
acCreatePackedDataHost(const int3 dims)
|
|
{
|
|
PackedData data = {};
|
|
|
|
data.dims = dims;
|
|
|
|
const size_t bytes = dims.x * dims.y * dims.z * sizeof(data.data[0]) * NUM_VTXBUF_HANDLES;
|
|
data.data = (AcReal*)malloc(bytes);
|
|
ERRCHK_ALWAYS(data.data);
|
|
|
|
return data;
|
|
}
|
|
|
|
static void
|
|
acTransferPackedDataToHost(const Device device, const cudaStream_t stream, const PackedData ddata,
|
|
PackedData* hdata)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
const size_t bytes = ddata.dims.x * ddata.dims.y * ddata.dims.z * sizeof(ddata.data[0]) *
|
|
NUM_VTXBUF_HANDLES;
|
|
ERRCHK_CUDA(cudaMemcpyAsync(hdata->data, ddata.data, bytes, cudaMemcpyDeviceToHost, stream));
|
|
}
|
|
|
|
static void
|
|
acTransferPackedDataToDevice(const Device device, const cudaStream_t stream, const PackedData hdata,
|
|
PackedData* ddata)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
const size_t bytes = hdata.dims.x * hdata.dims.y * hdata.dims.z * sizeof(hdata.data[0]) *
|
|
NUM_VTXBUF_HANDLES;
|
|
ERRCHK_CUDA(cudaMemcpyAsync(ddata->data, hdata.data, bytes, cudaMemcpyHostToDevice, stream));
|
|
}
|
|
|
|
static AcResult
|
|
acDestroyPackedDataHost(PackedData* data)
|
|
{
|
|
data->dims = (int3){-1, -1, -1};
|
|
free(data->data);
|
|
data->data = NULL;
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
#endif // MPI_GPUDIRECT_DISABLED
|
|
|
|
// TODO: do with packed data
|
|
static AcResult
|
|
acDeviceDistributeMeshMPI(const AcMesh src, const int3 decomposition, AcMesh* dst)
|
|
{
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
printf("Distributing mesh...\n");
|
|
fflush(stdout);
|
|
|
|
MPI_Datatype datatype = MPI_FLOAT;
|
|
if (sizeof(AcReal) == 8)
|
|
datatype = MPI_DOUBLE;
|
|
|
|
int pid, nprocs;
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
|
|
ERRCHK_ALWAYS(dst);
|
|
|
|
// Submesh nn
|
|
const int3 nn = (int3){
|
|
dst->info.int_params[AC_nx],
|
|
dst->info.int_params[AC_ny],
|
|
dst->info.int_params[AC_nz],
|
|
};
|
|
|
|
// Send to self
|
|
if (pid == 0) {
|
|
for (int vtxbuf = 0; vtxbuf < NUM_VTXBUF_HANDLES; ++vtxbuf) {
|
|
// For pencils
|
|
for (int k = NGHOST; k < NGHOST + nn.z; ++k) {
|
|
for (int j = NGHOST; j < NGHOST + nn.y; ++j) {
|
|
const int i = NGHOST;
|
|
const int count = nn.x;
|
|
const int src_idx = acVertexBufferIdx(i, j, k, src.info);
|
|
const int dst_idx = acVertexBufferIdx(i, j, k, dst->info);
|
|
memcpy(&dst->vertex_buffer[vtxbuf][dst_idx], //
|
|
&src.vertex_buffer[vtxbuf][src_idx], //
|
|
count * sizeof(src.vertex_buffer[i][0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int vtxbuf = 0; vtxbuf < NUM_VTXBUF_HANDLES; ++vtxbuf) {
|
|
// For pencils
|
|
for (int k = NGHOST; k < NGHOST + nn.z; ++k) {
|
|
for (int j = NGHOST; j < NGHOST + nn.y; ++j) {
|
|
const int i = NGHOST;
|
|
const int count = nn.x;
|
|
|
|
if (pid != 0) {
|
|
const int dst_idx = acVertexBufferIdx(i, j, k, dst->info);
|
|
// Recv
|
|
MPI_Status status;
|
|
MPI_Recv(&dst->vertex_buffer[vtxbuf][dst_idx], count, datatype, 0, 0,
|
|
MPI_COMM_WORLD, &status);
|
|
}
|
|
else {
|
|
for (int tgt_pid = 1; tgt_pid < nprocs; ++tgt_pid) {
|
|
const int3 tgt_pid3d = getPid3D(tgt_pid, decomposition);
|
|
const int src_idx = acVertexBufferIdx(i + tgt_pid3d.x * nn.x, //
|
|
j + tgt_pid3d.y * nn.y, //
|
|
k + tgt_pid3d.z * nn.z, //
|
|
src.info);
|
|
|
|
// Send
|
|
MPI_Send(&src.vertex_buffer[vtxbuf][src_idx], count, datatype, tgt_pid, 0,
|
|
MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
// TODO: do with packed data
|
|
static AcResult
|
|
acDeviceGatherMeshMPI(const AcMesh src, const int3 decomposition, AcMesh* dst)
|
|
{
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
printf("Gathering mesh...\n");
|
|
fflush(stdout);
|
|
|
|
MPI_Datatype datatype = MPI_FLOAT;
|
|
if (sizeof(AcReal) == 8)
|
|
datatype = MPI_DOUBLE;
|
|
|
|
int pid, nprocs;
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
|
|
if (pid == 0)
|
|
ERRCHK_ALWAYS(dst);
|
|
|
|
// Submesh nn
|
|
const int3 nn = (int3){
|
|
src.info.int_params[AC_nx],
|
|
src.info.int_params[AC_ny],
|
|
src.info.int_params[AC_nz],
|
|
};
|
|
|
|
// Submesh mm
|
|
const int3 mm = (int3){
|
|
src.info.int_params[AC_mx],
|
|
src.info.int_params[AC_my],
|
|
src.info.int_params[AC_mz],
|
|
};
|
|
|
|
// Send to self
|
|
if (pid == 0) {
|
|
for (int vtxbuf = 0; vtxbuf < NUM_VTXBUF_HANDLES; ++vtxbuf) {
|
|
// For pencils
|
|
for (int k = 0; k < mm.z; ++k) {
|
|
for (int j = 0; j < mm.y; ++j) {
|
|
const int i = 0;
|
|
const int count = mm.x;
|
|
const int src_idx = acVertexBufferIdx(i, j, k, src.info);
|
|
const int dst_idx = acVertexBufferIdx(i, j, k, dst->info);
|
|
memcpy(&dst->vertex_buffer[vtxbuf][dst_idx], //
|
|
&src.vertex_buffer[vtxbuf][src_idx], //
|
|
count * sizeof(src.vertex_buffer[i][0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int vtxbuf = 0; vtxbuf < NUM_VTXBUF_HANDLES; ++vtxbuf) {
|
|
// For pencils
|
|
for (int k = 0; k < mm.z; ++k) {
|
|
for (int j = 0; j < mm.y; ++j) {
|
|
const int i = 0;
|
|
const int count = mm.x;
|
|
|
|
if (pid != 0) {
|
|
// Send
|
|
const int src_idx = acVertexBufferIdx(i, j, k, src.info);
|
|
MPI_Send(&src.vertex_buffer[vtxbuf][src_idx], count, datatype, 0, 0,
|
|
MPI_COMM_WORLD);
|
|
}
|
|
else {
|
|
for (int tgt_pid = 1; tgt_pid < nprocs; ++tgt_pid) {
|
|
const int3 tgt_pid3d = getPid3D(tgt_pid, decomposition);
|
|
const int dst_idx = acVertexBufferIdx(i + tgt_pid3d.x * nn.x, //
|
|
j + tgt_pid3d.y * nn.y, //
|
|
k + tgt_pid3d.z * nn.z, //
|
|
dst->info);
|
|
|
|
// Recv
|
|
MPI_Status status;
|
|
MPI_Recv(&dst->vertex_buffer[vtxbuf][dst_idx], count, datatype, tgt_pid, 0,
|
|
MPI_COMM_WORLD, &status);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
typedef struct {
|
|
PackedData* srcs;
|
|
PackedData* dsts;
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
PackedData* srcs_host;
|
|
PackedData* dsts_host;
|
|
#endif
|
|
int3 dims;
|
|
size_t count;
|
|
|
|
cudaStream_t* streams;
|
|
MPI_Request* send_reqs;
|
|
MPI_Request* recv_reqs;
|
|
} CommData;
|
|
|
|
static CommData
|
|
acCreateCommData(const Device device, const int3 dims, const size_t count)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
CommData data = {};
|
|
|
|
data.srcs = (PackedData*)malloc(count * sizeof(PackedData));
|
|
data.dsts = (PackedData*)malloc(count * sizeof(PackedData));
|
|
data.dims = dims;
|
|
data.count = count;
|
|
|
|
data.streams = (cudaStream_t*)malloc(count * sizeof(cudaStream_t));
|
|
data.send_reqs = (MPI_Request*)malloc(count * sizeof(MPI_Request));
|
|
data.recv_reqs = (MPI_Request*)malloc(count * sizeof(MPI_Request));
|
|
|
|
ERRCHK_ALWAYS(data.srcs);
|
|
ERRCHK_ALWAYS(data.dsts);
|
|
ERRCHK_ALWAYS(data.send_reqs);
|
|
ERRCHK_ALWAYS(data.recv_reqs);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
data.srcs_host = (PackedData*)malloc(count * sizeof(PackedData));
|
|
data.dsts_host = (PackedData*)malloc(count * sizeof(PackedData));
|
|
ERRCHK_ALWAYS(data.srcs_host);
|
|
ERRCHK_ALWAYS(data.dsts_host);
|
|
#endif
|
|
|
|
for (size_t i = 0; i < count; ++i) {
|
|
data.srcs[i] = acCreatePackedData(dims);
|
|
data.dsts[i] = acCreatePackedData(dims);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
data.srcs_host[i] = acCreatePackedDataHost(dims);
|
|
data.dsts_host[i] = acCreatePackedDataHost(dims);
|
|
#endif
|
|
|
|
cudaStreamCreate(&data.streams[i]);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
static void
|
|
acDestroyCommData(const Device device, CommData* data)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
for (size_t i = 0; i < data->count; ++i) {
|
|
acDestroyPackedData(&data->srcs[i]);
|
|
acDestroyPackedData(&data->dsts[i]);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acDestroyPackedDataHost(&data->srcs_host[i]);
|
|
acDestroyPackedDataHost(&data->dsts_host[i]);
|
|
#endif
|
|
|
|
cudaStreamDestroy(data->streams[i]);
|
|
}
|
|
|
|
free(data->srcs);
|
|
free(data->dsts);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
free(data->srcs_host);
|
|
free(data->dsts_host);
|
|
#endif
|
|
|
|
free(data->streams);
|
|
free(data->send_reqs);
|
|
free(data->recv_reqs);
|
|
|
|
data->count = -1;
|
|
data->dims = (int3){-1, -1, -1};
|
|
}
|
|
|
|
static void
|
|
acPackCommData(const Device device, const int3* a0s, CommData* data)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
for (size_t i = 0; i < data->count; ++i)
|
|
acKernelPackData(data->streams[i], device->vba, a0s[i], data->srcs[i]);
|
|
}
|
|
|
|
static void
|
|
acUnpackCommData(const Device device, const int3* b0s, CommData* data)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
for (size_t i = 0; i < data->count; ++i)
|
|
acKernelUnpackData(data->streams[i], data->dsts[i], b0s[i], device->vba);
|
|
}
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
static void
|
|
acTransferCommDataToHost(const Device device, CommData* data)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
for (size_t i = 0; i < data->count; ++i)
|
|
acTransferPackedDataToHost(device, data->streams[i], data->srcs[i], &data->srcs_host[i]);
|
|
}
|
|
|
|
static void
|
|
acTransferCommDataToDevice(const Device device, CommData* data)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
for (size_t i = 0; i < data->count; ++i)
|
|
acTransferPackedDataToDevice(device, data->streams[i], data->dsts_host[i], &data->dsts[i]);
|
|
}
|
|
#endif
|
|
|
|
static AcResult
|
|
acTransferCommData(const Device device, //
|
|
const int3* a0s, // Src idx inside comp. domain
|
|
const int3* b0s, // Dst idx inside bound zone
|
|
CommData* data)
|
|
{
|
|
cudaSetDevice(device->id);
|
|
|
|
MPI_Datatype datatype = MPI_FLOAT;
|
|
if (sizeof(AcReal) == 8)
|
|
datatype = MPI_DOUBLE;
|
|
|
|
int nprocs, pid;
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
const int3 decomp = decompose(nprocs);
|
|
|
|
const int3 nn = (int3){
|
|
device->local_config.int_params[AC_nx],
|
|
device->local_config.int_params[AC_ny],
|
|
device->local_config.int_params[AC_nz],
|
|
};
|
|
|
|
const int3 dims = data->dims;
|
|
const size_t blockcount = data->count;
|
|
|
|
for (int k = -1; k <= 1; ++k) {
|
|
for (int j = -1; j <= 1; ++j) {
|
|
for (int i = -1; i <= 1; ++i) {
|
|
if (i == 0 && j == 0 && k == 0)
|
|
continue;
|
|
|
|
for (size_t a_idx = 0; a_idx < blockcount; ++a_idx) {
|
|
for (size_t b_idx = 0; b_idx < blockcount; ++b_idx) {
|
|
const int3 neighbor = (int3){i, j, k};
|
|
|
|
const int3 a0 = a0s[a_idx];
|
|
// const int3 a1 = a0 + dims;
|
|
|
|
const int3 b0 = a0 - neighbor * nn;
|
|
// const int3 b1 = a1 - neighbor * nn;
|
|
|
|
if (b0s[b_idx].x == b0.x && b0s[b_idx].y == b0.y && b0s[b_idx].z == b0.z) {
|
|
|
|
const size_t count = dims.x * dims.y * dims.z * NUM_VTXBUF_HANDLES;
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
PackedData dst = data->dsts_host[b_idx];
|
|
#else
|
|
PackedData dst = data->dsts[b_idx];
|
|
#endif
|
|
|
|
const int3 pid3d = getPid3D(pid, decomp);
|
|
MPI_Irecv(dst.data, count, datatype, getPid(pid3d - neighbor, decomp),
|
|
b_idx, MPI_COMM_WORLD, &data->recv_reqs[b_idx]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int k = -1; k <= 1; ++k) {
|
|
for (int j = -1; j <= 1; ++j) {
|
|
for (int i = -1; i <= 1; ++i) {
|
|
if (i == 0 && j == 0 && k == 0)
|
|
continue;
|
|
|
|
for (size_t a_idx = 0; a_idx < blockcount; ++a_idx) {
|
|
for (size_t b_idx = 0; b_idx < blockcount; ++b_idx) {
|
|
const int3 neighbor = (int3){i, j, k};
|
|
|
|
const int3 a0 = a0s[a_idx];
|
|
// const int3 a1 = a0 + dims;
|
|
|
|
const int3 b0 = a0 - neighbor * nn;
|
|
// const int3 b1 = a1 - neighbor * nn;
|
|
|
|
if (b0s[b_idx].x == b0.x && b0s[b_idx].y == b0.y && b0s[b_idx].z == b0.z) {
|
|
|
|
const size_t count = dims.x * dims.y * dims.z * NUM_VTXBUF_HANDLES;
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
PackedData src = data->srcs_host[a_idx];
|
|
#else
|
|
PackedData src = data->srcs[a_idx];
|
|
#endif
|
|
|
|
const int3 pid3d = getPid3D(pid, decomp);
|
|
|
|
cudaStreamSynchronize(data->streams[a_idx]);
|
|
MPI_Isend(src.data, count, datatype, getPid(pid3d + neighbor, decomp),
|
|
b_idx, MPI_COMM_WORLD, &data->send_reqs[b_idx]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
acTransferCommDataWait(const CommData data)
|
|
{
|
|
for (size_t i = 0; i < data.count; ++i) {
|
|
MPI_Wait(&data.send_reqs[i], MPI_STATUS_IGNORE);
|
|
MPI_Wait(&data.recv_reqs[i], MPI_STATUS_IGNORE);
|
|
}
|
|
}
|
|
|
|
static AcResult
|
|
acDeviceIntegrateMPI(const Device device, const AcReal dt)
|
|
{
|
|
// Configure
|
|
const int3 nn = (int3){
|
|
device->local_config.int_params[AC_nx],
|
|
device->local_config.int_params[AC_ny],
|
|
device->local_config.int_params[AC_nz],
|
|
};
|
|
|
|
// Corners
|
|
const int3 corner_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
(int3){nn.x, nn.y, NGHOST}, //
|
|
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
(int3){nn.x, NGHOST, nn.z}, //
|
|
(int3){NGHOST, nn.y, nn.z}, //
|
|
(int3){nn.x, nn.y, nn.z},
|
|
};
|
|
const int3 corner_b0s[] = {
|
|
(int3){0, 0, 0},
|
|
(int3){NGHOST + nn.x, 0, 0},
|
|
(int3){0, NGHOST + nn.y, 0},
|
|
(int3){NGHOST + nn.x, NGHOST + nn.y, 0},
|
|
|
|
(int3){0, 0, NGHOST + nn.z},
|
|
(int3){NGHOST + nn.x, 0, NGHOST + nn.z},
|
|
(int3){0, NGHOST + nn.y, NGHOST + nn.z},
|
|
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST + nn.z},
|
|
};
|
|
const int3 corner_dims = (int3){NGHOST, NGHOST, NGHOST};
|
|
|
|
// Edges X
|
|
const int3 edgex_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
(int3){NGHOST, nn.y, nn.z}, //
|
|
};
|
|
const int3 edgex_b0s[] = {
|
|
(int3){NGHOST, 0, 0},
|
|
(int3){NGHOST, NGHOST + nn.y, 0},
|
|
|
|
(int3){NGHOST, 0, NGHOST + nn.z},
|
|
(int3){NGHOST, NGHOST + nn.y, NGHOST + nn.z},
|
|
};
|
|
const int3 edgex_dims = (int3){nn.x, NGHOST, NGHOST};
|
|
|
|
// Edges Y
|
|
const int3 edgey_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
(int3){nn.x, NGHOST, nn.z}, //
|
|
};
|
|
const int3 edgey_b0s[] = {
|
|
(int3){0, NGHOST, 0},
|
|
(int3){NGHOST + nn.x, NGHOST, 0},
|
|
|
|
(int3){0, NGHOST, NGHOST + nn.z},
|
|
(int3){NGHOST + nn.x, NGHOST, NGHOST + nn.z},
|
|
};
|
|
const int3 edgey_dims = (int3){NGHOST, nn.y, NGHOST};
|
|
|
|
// Edges Z
|
|
const int3 edgez_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
(int3){nn.x, nn.y, NGHOST}, //
|
|
};
|
|
const int3 edgez_b0s[] = {
|
|
(int3){0, 0, NGHOST},
|
|
(int3){NGHOST + nn.x, 0, NGHOST},
|
|
|
|
(int3){0, NGHOST + nn.y, NGHOST},
|
|
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST},
|
|
};
|
|
|
|
const int3 edgez_dims = (int3){NGHOST, NGHOST, nn.z};
|
|
|
|
// Sides XY
|
|
const int3 sidexy_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
};
|
|
const int3 sidexy_b0s[] = {
|
|
(int3){NGHOST, NGHOST, 0}, //
|
|
(int3){NGHOST, NGHOST, NGHOST + nn.z}, //
|
|
};
|
|
const int3 sidexy_dims = (int3){nn.x, nn.y, NGHOST};
|
|
|
|
// Sides XZ
|
|
const int3 sidexz_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
};
|
|
const int3 sidexz_b0s[] = {
|
|
(int3){NGHOST, 0, NGHOST}, //
|
|
(int3){NGHOST, NGHOST + nn.y, NGHOST}, //
|
|
};
|
|
const int3 sidexz_dims = (int3){nn.x, NGHOST, nn.z};
|
|
|
|
// Sides YZ
|
|
const int3 sideyz_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
};
|
|
const int3 sideyz_b0s[] = {
|
|
(int3){0, NGHOST, NGHOST}, //
|
|
(int3){NGHOST + nn.x, NGHOST, NGHOST}, //
|
|
};
|
|
const int3 sideyz_dims = (int3){NGHOST, nn.y, nn.z};
|
|
|
|
// Alloc
|
|
CommData corner_data = acCreateCommData(device, corner_dims, ARRAY_SIZE(corner_a0s));
|
|
CommData edgex_data = acCreateCommData(device, edgex_dims, ARRAY_SIZE(edgex_a0s));
|
|
CommData edgey_data = acCreateCommData(device, edgey_dims, ARRAY_SIZE(edgey_a0s));
|
|
CommData edgez_data = acCreateCommData(device, edgez_dims, ARRAY_SIZE(edgez_a0s));
|
|
CommData sidexy_data = acCreateCommData(device, sidexy_dims, ARRAY_SIZE(sidexy_a0s));
|
|
CommData sidexz_data = acCreateCommData(device, sidexz_dims, ARRAY_SIZE(sidexz_a0s));
|
|
CommData sideyz_data = acCreateCommData(device, sideyz_dims, ARRAY_SIZE(sideyz_a0s));
|
|
|
|
// Warmup
|
|
for (int i = 0; i < 10; ++i) {
|
|
acPackCommData(device, corner_a0s, &corner_data);
|
|
acPackCommData(device, edgex_a0s, &edgex_data);
|
|
acPackCommData(device, edgey_a0s, &edgey_data);
|
|
acPackCommData(device, edgez_a0s, &edgez_data);
|
|
acPackCommData(device, sidexy_a0s, &sidexy_data);
|
|
acPackCommData(device, sidexz_a0s, &sidexz_data);
|
|
acPackCommData(device, sideyz_a0s, &sideyz_data);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acTransferCommDataToHost(device, &corner_data);
|
|
acTransferCommDataToHost(device, &edgex_data);
|
|
acTransferCommDataToHost(device, &edgey_data);
|
|
acTransferCommDataToHost(device, &edgez_data);
|
|
acTransferCommDataToHost(device, &sidexy_data);
|
|
acTransferCommDataToHost(device, &sidexz_data);
|
|
acTransferCommDataToHost(device, &sideyz_data);
|
|
#endif
|
|
|
|
acTransferCommData(device, corner_a0s, corner_b0s, &corner_data);
|
|
acTransferCommData(device, edgex_a0s, edgex_b0s, &edgex_data);
|
|
acTransferCommData(device, edgey_a0s, edgey_b0s, &edgey_data);
|
|
acTransferCommData(device, edgez_a0s, edgez_b0s, &edgez_data);
|
|
acTransferCommData(device, sidexy_a0s, sidexy_b0s, &sidexy_data);
|
|
acTransferCommData(device, sidexz_a0s, sidexz_b0s, &sidexz_data);
|
|
acTransferCommData(device, sideyz_a0s, sideyz_b0s, &sideyz_data);
|
|
|
|
acTransferCommDataWait(corner_data);
|
|
acTransferCommDataWait(edgex_data);
|
|
acTransferCommDataWait(edgey_data);
|
|
acTransferCommDataWait(edgez_data);
|
|
acTransferCommDataWait(sidexy_data);
|
|
acTransferCommDataWait(sidexz_data);
|
|
acTransferCommDataWait(sideyz_data);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acTransferCommDataToDevice(device, &corner_data);
|
|
acTransferCommDataToDevice(device, &edgex_data);
|
|
acTransferCommDataToDevice(device, &edgey_data);
|
|
acTransferCommDataToDevice(device, &edgez_data);
|
|
acTransferCommDataToDevice(device, &sidexy_data);
|
|
acTransferCommDataToDevice(device, &sidexz_data);
|
|
acTransferCommDataToDevice(device, &sideyz_data);
|
|
#endif
|
|
|
|
acUnpackCommData(device, corner_b0s, &corner_data);
|
|
acUnpackCommData(device, edgex_b0s, &edgex_data);
|
|
acUnpackCommData(device, edgey_b0s, &edgey_data);
|
|
acUnpackCommData(device, edgez_b0s, &edgez_data);
|
|
acUnpackCommData(device, sidexy_b0s, &sidexy_data);
|
|
acUnpackCommData(device, sidexz_b0s, &sidexz_data);
|
|
acUnpackCommData(device, sideyz_b0s, &sideyz_data);
|
|
}
|
|
|
|
// Communicate
|
|
Timer ttot;
|
|
cudaDeviceSynchronize();
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
timer_reset(&ttot);
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
|
|
const int num_iterations = 1;
|
|
for (int i = 0; i < num_iterations; ++i) {
|
|
for (int isubstep = 0; isubstep < 3; ++isubstep) {
|
|
acPackCommData(device, corner_a0s, &corner_data);
|
|
acPackCommData(device, edgex_a0s, &edgex_data);
|
|
acPackCommData(device, edgey_a0s, &edgey_data);
|
|
acPackCommData(device, edgez_a0s, &edgez_data);
|
|
acPackCommData(device, sidexy_a0s, &sidexy_data);
|
|
acPackCommData(device, sidexz_a0s, &sidexz_data);
|
|
acPackCommData(device, sideyz_a0s, &sideyz_data);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acTransferCommDataToHost(device, &corner_data);
|
|
acTransferCommDataToHost(device, &edgex_data);
|
|
acTransferCommDataToHost(device, &edgey_data);
|
|
acTransferCommDataToHost(device, &edgez_data);
|
|
acTransferCommDataToHost(device, &sidexy_data);
|
|
acTransferCommDataToHost(device, &sidexz_data);
|
|
acTransferCommDataToHost(device, &sideyz_data);
|
|
#endif
|
|
|
|
//////////// INNER INTEGRATION //////////////
|
|
{
|
|
const int3 m1 = (int3){2 * NGHOST, 2 * NGHOST, 2 * NGHOST};
|
|
const int3 m2 = nn;
|
|
acDeviceIntegrateSubstep(device, STREAM_16, isubstep, m1, m2, dt);
|
|
}
|
|
////////////////////////////////////////////
|
|
|
|
acTransferCommData(device, corner_a0s, corner_b0s, &corner_data);
|
|
acTransferCommData(device, edgex_a0s, edgex_b0s, &edgex_data);
|
|
acTransferCommData(device, edgey_a0s, edgey_b0s, &edgey_data);
|
|
acTransferCommData(device, edgez_a0s, edgez_b0s, &edgez_data);
|
|
acTransferCommData(device, sidexy_a0s, sidexy_b0s, &sidexy_data);
|
|
acTransferCommData(device, sidexz_a0s, sidexz_b0s, &sidexz_data);
|
|
acTransferCommData(device, sideyz_a0s, sideyz_b0s, &sideyz_data);
|
|
|
|
acTransferCommDataWait(corner_data);
|
|
acTransferCommDataWait(edgex_data);
|
|
acTransferCommDataWait(edgey_data);
|
|
acTransferCommDataWait(edgez_data);
|
|
acTransferCommDataWait(sidexy_data);
|
|
acTransferCommDataWait(sidexz_data);
|
|
acTransferCommDataWait(sideyz_data);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acTransferCommDataToDevice(device, &corner_data);
|
|
acTransferCommDataToDevice(device, &edgex_data);
|
|
acTransferCommDataToDevice(device, &edgey_data);
|
|
acTransferCommDataToDevice(device, &edgez_data);
|
|
acTransferCommDataToDevice(device, &sidexy_data);
|
|
acTransferCommDataToDevice(device, &sidexz_data);
|
|
acTransferCommDataToDevice(device, &sideyz_data);
|
|
#endif
|
|
|
|
acUnpackCommData(device, corner_b0s, &corner_data);
|
|
acUnpackCommData(device, edgex_b0s, &edgex_data);
|
|
acUnpackCommData(device, edgey_b0s, &edgey_data);
|
|
acUnpackCommData(device, edgez_b0s, &edgez_data);
|
|
acUnpackCommData(device, sidexy_b0s, &sidexy_data);
|
|
acUnpackCommData(device, sidexz_b0s, &sidexz_data);
|
|
acUnpackCommData(device, sideyz_b0s, &sideyz_data);
|
|
//////////// OUTER INTEGRATION //////////////
|
|
acDeviceSynchronizeStream(device, STREAM_ALL); // Wait for unpacking
|
|
{ // Front
|
|
const int3 m1 = (int3){NGHOST, NGHOST, NGHOST};
|
|
const int3 m2 = m1 + (int3){nn.x, nn.y, NGHOST};
|
|
acDeviceIntegrateSubstep(device, STREAM_0, isubstep, m1, m2, dt);
|
|
}
|
|
{ // Back
|
|
const int3 m1 = (int3){NGHOST, NGHOST, nn.z};
|
|
const int3 m2 = m1 + (int3){nn.x, nn.y, NGHOST};
|
|
acDeviceIntegrateSubstep(device, STREAM_1, isubstep, m1, m2, dt);
|
|
}
|
|
{ // Bottom
|
|
const int3 m1 = (int3){NGHOST, NGHOST, 2 * NGHOST};
|
|
const int3 m2 = m1 + (int3){nn.x, NGHOST, nn.z - 2 * NGHOST};
|
|
acDeviceIntegrateSubstep(device, STREAM_2, isubstep, m1, m2, dt);
|
|
}
|
|
{ // Top
|
|
const int3 m1 = (int3){NGHOST, nn.y, 2 * NGHOST};
|
|
const int3 m2 = m1 + (int3){nn.x, NGHOST, nn.z - 2 * NGHOST};
|
|
acDeviceIntegrateSubstep(device, STREAM_3, isubstep, m1, m2, dt);
|
|
}
|
|
{ // Left
|
|
const int3 m1 = (int3){NGHOST, 2 * NGHOST, 2 * NGHOST};
|
|
const int3 m2 = m1 + (int3){NGHOST, nn.y - 2 * NGHOST, nn.z - 2 * NGHOST};
|
|
acDeviceIntegrateSubstep(device, STREAM_4, isubstep, m1, m2, dt);
|
|
}
|
|
{ // Right
|
|
const int3 m1 = (int3){nn.x, 2 * NGHOST, 2 * NGHOST};
|
|
const int3 m2 = m1 + (int3){NGHOST, nn.y - 2 * NGHOST, nn.z - 2 * NGHOST};
|
|
acDeviceIntegrateSubstep(device, STREAM_5, isubstep, m1, m2, dt);
|
|
}
|
|
acDeviceSwapBuffers(device);
|
|
acDeviceSynchronizeStream(device, STREAM_ALL); // Wait until inner and outer done
|
|
////////////////////////////////////////////
|
|
}
|
|
}
|
|
|
|
cudaDeviceSynchronize();
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
const double msec = timer_diff_nsec(ttot) / 1e6;
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
|
|
int pid, nprocs;
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
if (!pid) {
|
|
printf("--- Total communication time per step w/ integration: %f ms\n",
|
|
msec / num_iterations);
|
|
|
|
// Write out to file
|
|
FILE* fp = fopen("benchmark.result", "a+");
|
|
fprintf(fp, "%d, %f\n", nprocs, msec);
|
|
fclose(fp);
|
|
}
|
|
|
|
// Dealloc
|
|
acDestroyCommData(device, &corner_data);
|
|
acDestroyCommData(device, &edgex_data);
|
|
acDestroyCommData(device, &edgey_data);
|
|
acDestroyCommData(device, &edgez_data);
|
|
acDestroyCommData(device, &sidexy_data);
|
|
acDestroyCommData(device, &sidexz_data);
|
|
acDestroyCommData(device, &sideyz_data);
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
static AcResult
|
|
acDeviceCommunicateHalosMPI(const Device device)
|
|
{
|
|
// Configure
|
|
const int3 nn = (int3){
|
|
device->local_config.int_params[AC_nx],
|
|
device->local_config.int_params[AC_ny],
|
|
device->local_config.int_params[AC_nz],
|
|
};
|
|
const AcReal dt = FLT_EPSILON; // TODO replace with the real one
|
|
|
|
// Corners
|
|
const int3 corner_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
(int3){nn.x, nn.y, NGHOST}, //
|
|
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
(int3){nn.x, NGHOST, nn.z}, //
|
|
(int3){NGHOST, nn.y, nn.z}, //
|
|
(int3){nn.x, nn.y, nn.z},
|
|
};
|
|
const int3 corner_b0s[] = {
|
|
(int3){0, 0, 0},
|
|
(int3){NGHOST + nn.x, 0, 0},
|
|
(int3){0, NGHOST + nn.y, 0},
|
|
(int3){NGHOST + nn.x, NGHOST + nn.y, 0},
|
|
|
|
(int3){0, 0, NGHOST + nn.z},
|
|
(int3){NGHOST + nn.x, 0, NGHOST + nn.z},
|
|
(int3){0, NGHOST + nn.y, NGHOST + nn.z},
|
|
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST + nn.z},
|
|
};
|
|
const int3 corner_dims = (int3){NGHOST, NGHOST, NGHOST};
|
|
|
|
// Edges X
|
|
const int3 edgex_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
(int3){NGHOST, nn.y, nn.z}, //
|
|
};
|
|
const int3 edgex_b0s[] = {
|
|
(int3){NGHOST, 0, 0},
|
|
(int3){NGHOST, NGHOST + nn.y, 0},
|
|
|
|
(int3){NGHOST, 0, NGHOST + nn.z},
|
|
(int3){NGHOST, NGHOST + nn.y, NGHOST + nn.z},
|
|
};
|
|
const int3 edgex_dims = (int3){nn.x, NGHOST, NGHOST};
|
|
|
|
// Edges Y
|
|
const int3 edgey_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
(int3){nn.x, NGHOST, nn.z}, //
|
|
};
|
|
const int3 edgey_b0s[] = {
|
|
(int3){0, NGHOST, 0},
|
|
(int3){NGHOST + nn.x, NGHOST, 0},
|
|
|
|
(int3){0, NGHOST, NGHOST + nn.z},
|
|
(int3){NGHOST + nn.x, NGHOST, NGHOST + nn.z},
|
|
};
|
|
const int3 edgey_dims = (int3){NGHOST, nn.y, NGHOST};
|
|
|
|
// Edges Z
|
|
const int3 edgez_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
(int3){nn.x, nn.y, NGHOST}, //
|
|
};
|
|
const int3 edgez_b0s[] = {
|
|
(int3){0, 0, NGHOST},
|
|
(int3){NGHOST + nn.x, 0, NGHOST},
|
|
|
|
(int3){0, NGHOST + nn.y, NGHOST},
|
|
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST},
|
|
};
|
|
|
|
const int3 edgez_dims = (int3){NGHOST, NGHOST, nn.z};
|
|
|
|
// Sides XY
|
|
const int3 sidexy_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, NGHOST, nn.z}, //
|
|
};
|
|
const int3 sidexy_b0s[] = {
|
|
(int3){NGHOST, NGHOST, 0}, //
|
|
(int3){NGHOST, NGHOST, NGHOST + nn.z}, //
|
|
};
|
|
const int3 sidexy_dims = (int3){nn.x, nn.y, NGHOST};
|
|
|
|
// Sides XZ
|
|
const int3 sidexz_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){NGHOST, nn.y, NGHOST}, //
|
|
};
|
|
const int3 sidexz_b0s[] = {
|
|
(int3){NGHOST, 0, NGHOST}, //
|
|
(int3){NGHOST, NGHOST + nn.y, NGHOST}, //
|
|
};
|
|
const int3 sidexz_dims = (int3){nn.x, NGHOST, nn.z};
|
|
|
|
// Sides YZ
|
|
const int3 sideyz_a0s[] = {
|
|
(int3){NGHOST, NGHOST, NGHOST}, //
|
|
(int3){nn.x, NGHOST, NGHOST}, //
|
|
};
|
|
const int3 sideyz_b0s[] = {
|
|
(int3){0, NGHOST, NGHOST}, //
|
|
(int3){NGHOST + nn.x, NGHOST, NGHOST}, //
|
|
};
|
|
const int3 sideyz_dims = (int3){NGHOST, nn.y, nn.z};
|
|
|
|
// Alloc
|
|
CommData corner_data = acCreateCommData(device, corner_dims, ARRAY_SIZE(corner_a0s));
|
|
CommData edgex_data = acCreateCommData(device, edgex_dims, ARRAY_SIZE(edgex_a0s));
|
|
CommData edgey_data = acCreateCommData(device, edgey_dims, ARRAY_SIZE(edgey_a0s));
|
|
CommData edgez_data = acCreateCommData(device, edgez_dims, ARRAY_SIZE(edgez_a0s));
|
|
CommData sidexy_data = acCreateCommData(device, sidexy_dims, ARRAY_SIZE(sidexy_a0s));
|
|
CommData sidexz_data = acCreateCommData(device, sidexz_dims, ARRAY_SIZE(sidexz_a0s));
|
|
CommData sideyz_data = acCreateCommData(device, sideyz_dims, ARRAY_SIZE(sideyz_a0s));
|
|
|
|
// Communicate
|
|
Timer ttot;
|
|
cudaDeviceSynchronize();
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
timer_reset(&ttot);
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
|
|
acPackCommData(device, corner_a0s, &corner_data);
|
|
acPackCommData(device, edgex_a0s, &edgex_data);
|
|
acPackCommData(device, edgey_a0s, &edgey_data);
|
|
acPackCommData(device, edgez_a0s, &edgez_data);
|
|
acPackCommData(device, sidexy_a0s, &sidexy_data);
|
|
acPackCommData(device, sidexz_a0s, &sidexz_data);
|
|
acPackCommData(device, sideyz_a0s, &sideyz_data);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acTransferCommDataToHost(device, &corner_data);
|
|
acTransferCommDataToHost(device, &edgex_data);
|
|
acTransferCommDataToHost(device, &edgey_data);
|
|
acTransferCommDataToHost(device, &edgez_data);
|
|
acTransferCommDataToHost(device, &sidexy_data);
|
|
acTransferCommDataToHost(device, &sidexz_data);
|
|
acTransferCommDataToHost(device, &sideyz_data);
|
|
#endif
|
|
|
|
acTransferCommData(device, corner_a0s, corner_b0s, &corner_data);
|
|
acTransferCommData(device, edgex_a0s, edgex_b0s, &edgex_data);
|
|
acTransferCommData(device, edgey_a0s, edgey_b0s, &edgey_data);
|
|
acTransferCommData(device, edgez_a0s, edgez_b0s, &edgez_data);
|
|
acTransferCommData(device, sidexy_a0s, sidexy_b0s, &sidexy_data);
|
|
acTransferCommData(device, sidexz_a0s, sidexz_b0s, &sidexz_data);
|
|
acTransferCommData(device, sideyz_a0s, sideyz_b0s, &sideyz_data);
|
|
|
|
acTransferCommDataWait(corner_data);
|
|
acTransferCommDataWait(edgex_data);
|
|
acTransferCommDataWait(edgey_data);
|
|
acTransferCommDataWait(edgez_data);
|
|
acTransferCommDataWait(sidexy_data);
|
|
acTransferCommDataWait(sidexz_data);
|
|
acTransferCommDataWait(sideyz_data);
|
|
|
|
#if MPI_GPUDIRECT_DISABLED
|
|
acTransferCommDataToDevice(device, &corner_data);
|
|
acTransferCommDataToDevice(device, &edgex_data);
|
|
acTransferCommDataToDevice(device, &edgey_data);
|
|
acTransferCommDataToDevice(device, &edgez_data);
|
|
acTransferCommDataToDevice(device, &sidexy_data);
|
|
acTransferCommDataToDevice(device, &sidexz_data);
|
|
acTransferCommDataToDevice(device, &sideyz_data);
|
|
#endif
|
|
|
|
acUnpackCommData(device, corner_b0s, &corner_data);
|
|
acUnpackCommData(device, edgex_b0s, &edgex_data);
|
|
acUnpackCommData(device, edgey_b0s, &edgey_data);
|
|
acUnpackCommData(device, edgez_b0s, &edgez_data);
|
|
acUnpackCommData(device, sidexy_b0s, &sidexy_data);
|
|
acUnpackCommData(device, sidexz_b0s, &sidexz_data);
|
|
acUnpackCommData(device, sideyz_b0s, &sideyz_data);
|
|
|
|
cudaDeviceSynchronize();
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
const double msec = timer_diff_nsec(ttot) / 1e6;
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
|
|
int pid, nprocs;
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
if (!pid) {
|
|
printf("--- Total communication time per substep (comm): %f ms\n", msec);
|
|
|
|
// Write out to file
|
|
FILE* fp = fopen("benchmark.result", "a+");
|
|
fprintf(fp, "%d, %f\n", nprocs, msec);
|
|
fclose(fp);
|
|
}
|
|
|
|
// Dealloc
|
|
acDestroyCommData(device, &corner_data);
|
|
acDestroyCommData(device, &edgex_data);
|
|
acDestroyCommData(device, &edgey_data);
|
|
acDestroyCommData(device, &edgez_data);
|
|
acDestroyCommData(device, &sidexy_data);
|
|
acDestroyCommData(device, &sidexz_data);
|
|
acDestroyCommData(device, &sideyz_data);
|
|
|
|
return AC_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
static int3
|
|
findOptimalDecomposition(const int3 nn)
|
|
{
|
|
int3 decomposition = (int3){1, 1, 1};
|
|
}*/
|
|
|
|
AcResult
|
|
acDeviceRunMPITest(void)
|
|
{
|
|
MPI_Init(NULL, NULL);
|
|
|
|
int nprocs, pid;
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
|
|
char processor_name[MPI_MAX_PROCESSOR_NAME];
|
|
int name_len;
|
|
MPI_Get_processor_name(processor_name, &name_len);
|
|
printf("Processor %s. Process %d of %d.\n", processor_name, pid, nprocs);
|
|
|
|
// Create model and candidate meshes
|
|
AcMeshInfo info;
|
|
acLoadConfig(AC_DEFAULT_CONFIG, &info);
|
|
info.real_params[AC_inv_dsx] = AcReal(1.0) / info.real_params[AC_dsx];
|
|
info.real_params[AC_inv_dsy] = AcReal(1.0) / info.real_params[AC_dsy];
|
|
info.real_params[AC_inv_dsz] = AcReal(1.0) / info.real_params[AC_dsz];
|
|
info.real_params[AC_cs2_sound] = info.real_params[AC_cs_sound] * info.real_params[AC_cs_sound];
|
|
|
|
AcMesh model, candidate;
|
|
|
|
// Master CPU
|
|
if (pid == 0) {
|
|
acMeshCreate(info, &model);
|
|
acMeshCreate(info, &candidate);
|
|
|
|
acMeshRandomize(&model);
|
|
acMeshRandomize(&candidate);
|
|
}
|
|
|
|
/// DECOMPOSITION & SUBMESH ///////////////////////////////////
|
|
AcMeshInfo submesh_info = info;
|
|
const int3 decomposition = decompose(nprocs);
|
|
const int3 pid3d = getPid3D(pid, decomposition);
|
|
|
|
printf("Decomposition: %d, %d, %d\n", decomposition.x, decomposition.y, decomposition.z);
|
|
printf("Process %d: (%d, %d, %d)\n", pid, pid3d.x, pid3d.y, pid3d.z);
|
|
ERRCHK_ALWAYS(info.int_params[AC_nx] % decomposition.x == 0);
|
|
ERRCHK_ALWAYS(info.int_params[AC_ny] % decomposition.y == 0);
|
|
ERRCHK_ALWAYS(info.int_params[AC_nz] % decomposition.z == 0);
|
|
|
|
const int submesh_nx = info.int_params[AC_nx] / decomposition.x;
|
|
const int submesh_ny = info.int_params[AC_ny] / decomposition.y;
|
|
const int submesh_nz = info.int_params[AC_nz] / decomposition.z;
|
|
submesh_info.int_params[AC_nx] = submesh_nx;
|
|
submesh_info.int_params[AC_ny] = submesh_ny;
|
|
submesh_info.int_params[AC_nz] = submesh_nz;
|
|
submesh_info.int3_params[AC_global_grid_n] = (int3){
|
|
info.int_params[AC_nx],
|
|
info.int_params[AC_ny],
|
|
info.int_params[AC_nz],
|
|
};
|
|
submesh_info.int3_params[AC_multigpu_offset] = pid3d *
|
|
(int3){submesh_nx, submesh_ny, submesh_nz};
|
|
WARNING("AC_multigpu_offset not yet tested");
|
|
acUpdateBuiltinParams(&submesh_info);
|
|
|
|
AcMesh submesh;
|
|
acMeshCreate(submesh_info, &submesh);
|
|
acMeshRandomize(&submesh);
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
// GPU INIT ////////////////////////////////////////////////////
|
|
int devices_per_node = -1;
|
|
cudaGetDeviceCount(&devices_per_node);
|
|
|
|
Device device;
|
|
acDeviceCreate(pid % devices_per_node, submesh_info, &device);
|
|
// TODO enable peer access
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
// DISTRIBUTE & LOAD //////////////////////////////////////////
|
|
acDeviceDistributeMeshMPI(model, decomposition, &submesh);
|
|
acDeviceLoadMesh(device, STREAM_DEFAULT, submesh);
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
// SYNC //////////////////////////////////////////////////////
|
|
acDeviceSynchronizeStream(device, STREAM_ALL);
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
// TIMING START //////////////////////////////////////////////
|
|
acDeviceSynchronizeStream(device, STREAM_ALL);
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
Timer t;
|
|
timer_reset(&t);
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
// INTEGRATION & BOUNDCONDS////////////////////////////////////
|
|
// acDeviceCommunicateHalosMPI(device);
|
|
acDeviceIntegrateMPI(device, FLT_EPSILON);
|
|
acDeviceCommunicateHalosMPI(device);
|
|
///////////////////////////////////////////////////////////////
|
|
|
|
// TIMING END //////////////////////////////////////////////
|
|
acDeviceSynchronizeStream(device, STREAM_ALL);
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
if (!pid) {
|
|
timer_diff_print(t);
|
|
}
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
// STORE & GATHER /////////////////////////////////////////////
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
acDeviceStoreMesh(device, STREAM_DEFAULT, &submesh);
|
|
acDeviceSynchronizeStream(device, STREAM_DEFAULT);
|
|
acDeviceGatherMeshMPI(submesh, decomposition, &candidate);
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
// VERIFY ////////////////////////////////////////////////////
|
|
if (pid == 0) {
|
|
acModelIntegrateStep(model, FLT_EPSILON);
|
|
acMeshApplyPeriodicBounds(&model);
|
|
|
|
acVerifyMesh(model, candidate);
|
|
acMeshDestroy(&model);
|
|
acMeshDestroy(&candidate);
|
|
}
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
// DESTROY ///////////////////////////////////////////////////
|
|
acDeviceDestroy(device);
|
|
acMeshDestroy(&submesh);
|
|
MPI_Finalize();
|
|
//////////////////////////////////////////////////////////////
|
|
return AC_SUCCESS;
|
|
}
|
|
#else
|
|
AcResult
|
|
acDeviceRunMPITest(void)
|
|
{
|
|
WARNING("MPI was not enabled but acDeviceRunMPITest() was called");
|
|
return AC_FAILURE;
|
|
}
|
|
#endif // AC_MPI_ENABLED
|
|
|
|
/*
|
|
struct grid_s {
|
|
Device device;
|
|
};
|
|
|
|
typedef grid_s* Grid;
|
|
|
|
AcResult
|
|
acGridInit(void)
|
|
{
|
|
MPI_Init(NULL, NULL);
|
|
|
|
int nprocs, pid;
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
|
|
|
|
char processor_name[MPI_MAX_PROCESSOR_NAME];
|
|
int name_len;
|
|
MPI_Get_processor_name(processor_name, &name_len);
|
|
printf("Processor %s. Process %d of %d.\n", processor_name, pid, nprocs);
|
|
}
|
|
|
|
AcResult
|
|
acGridLoad(const AcMesh mesh, Grid* grid)
|
|
{
|
|
}
|
|
|
|
AcResult
|
|
acGridStore(const Grid grid, AcMesh* mesh)
|
|
{
|
|
}
|
|
|
|
AcResult
|
|
acGridQuit(AcGrid& grid)
|
|
{
|
|
}
|
|
*/
|