Files
astaroth/acc/src/code_generator.c

721 lines
25 KiB
C

/*
Copyright (C) 2014-2019, Johannes Pekkilae, Miikka Vaeisalae.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file
* \brief Brief info.
*
* Detailed info.
*
*/
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "acc.tab.h"
#include "ast.h"
ASTNode* root = NULL;
// Output files
static FILE* DSLHEADER = NULL;
static FILE* CUDAHEADER = NULL;
/*
* =============================================================================
* Translation
* =============================================================================
*/
#define TRANSLATION_TABLE_SIZE (1024)
static const char* translation_table[TRANSLATION_TABLE_SIZE] = {
[0] = NULL,
// Control flow
[IF] = "if",
[ELSE] = "else",
[ELIF] = "else if",
[WHILE] = "while",
[FOR] = "for",
// Type specifiers
[VOID] = "void",
[INT] = "int",
[INT3] = "int3",
[SCALAR] = "AcReal",
[VECTOR] = "AcReal3",
[MATRIX] = "AcMatrix",
[SCALARFIELD] = "AcReal",
[SCALARARRAY] = "const AcReal* __restrict__",
[COMPLEX] = "acComplex",
// Type qualifiers
[KERNEL] = "template <int step_number> static __global__",
[DEVICE] = "static __device__ __forceinline__",
[PREPROCESSED] = "static __device__ __forceinline__",
[CONSTANT] = "const",
[IN] = "in",
[OUT] = "out",
[UNIFORM] = "uniform",
// ETC
[INPLACE_INC] = "++",
[INPLACE_DEC] = "--",
// Unary
[','] = ",",
[';'] = ";\n",
['('] = "(",
[')'] = ")",
['['] = "[",
[']'] = "]",
['{'] = "{\n",
['}'] = "}\n",
['='] = "=",
['+'] = "+",
['-'] = "-",
['/'] = "/",
['*'] = "*",
['<'] = "<",
['>'] = ">",
['!'] = "!",
['.'] = "."};
static const char*
translate(const int token)
{
assert(token >= 0);
assert(token < TRANSLATION_TABLE_SIZE);
if (token > 0) {
if (!translation_table[token])
printf("ERROR: unidentified token %d\n", token);
assert(translation_table[token]);
}
return translation_table[token];
}
/*
* =============================================================================
* Symbols
* =============================================================================
*/
typedef enum {
SYMBOLTYPE_FUNCTION,
SYMBOLTYPE_FUNCTION_PARAMETER,
SYMBOLTYPE_OTHER,
NUM_SYMBOLTYPES
} SymbolType;
#define MAX_ID_LEN (256)
typedef struct {
SymbolType type;
int type_qualifier;
int type_specifier;
char identifier[MAX_ID_LEN];
} Symbol;
#define SYMBOL_TABLE_SIZE (65536)
static Symbol symbol_table[SYMBOL_TABLE_SIZE] = {};
#define MAX_NESTS (32)
static size_t num_symbols[MAX_NESTS] = {};
static size_t current_nest = 0;
static Symbol*
symboltable_lookup(const char* identifier)
{
// TODO assert tha symbol not function! cannot be since we allow overloads->conflicts if not
// explicit
if (!identifier)
return NULL;
for (size_t i = 0; i < num_symbols[current_nest]; ++i)
if (strcmp(identifier, symbol_table[i].identifier) == 0)
return &symbol_table[i];
return NULL;
}
static void
add_symbol(const SymbolType type, const int tqualifier, const int tspecifier, const char* id)
{
assert(num_symbols[current_nest] < SYMBOL_TABLE_SIZE);
if (symboltable_lookup(id) && type != SYMBOLTYPE_FUNCTION) {
fprintf(stderr,
"Syntax error. Symbol '%s' is ambiguous, declared multiple times in the same scope"
" (shadowing).\n",
id);
}
symbol_table[num_symbols[current_nest]].type = type;
symbol_table[num_symbols[current_nest]].type_qualifier = tqualifier;
symbol_table[num_symbols[current_nest]].type_specifier = tspecifier;
strcpy(symbol_table[num_symbols[current_nest]].identifier, id);
++num_symbols[current_nest];
}
static void
print_symbol2(const Symbol* symbol)
{
const char* fields[] = {
translate(symbol->type_qualifier),
translate(symbol->type_specifier),
symbol->identifier,
};
const size_t num_fields = sizeof(fields) / sizeof(fields[0]);
for (size_t i = 0; i < num_fields; ++i)
if (fields[i])
fprintf(CUDAHEADER, "%s ", fields[i]);
}
static void
print_symbol(const size_t handle)
{
assert(handle < SYMBOL_TABLE_SIZE);
const char* fields[] = {
translate(symbol_table[handle].type_qualifier),
translate(symbol_table[handle].type_specifier),
symbol_table[handle].identifier,
};
const size_t num_fields = sizeof(fields) / sizeof(fields[0]);
for (size_t i = 0; i < num_fields; ++i)
if (fields[i])
printf("%s ", fields[i]);
}
static inline void
print_symbol_table(void)
{
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
printf("%lu: ", i);
const char* fields[] = {translate(symbol_table[i].type_qualifier),
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier};
const size_t num_fields = sizeof(fields) / sizeof(fields[0]);
for (size_t j = 0; j < num_fields; ++j)
if (fields[j])
printf("%s ", fields[j]);
if (symbol_table[i].type == SYMBOLTYPE_FUNCTION)
printf("(function)");
else if (symbol_table[i].type == SYMBOLTYPE_FUNCTION_PARAMETER)
printf("(function parameter)");
else
printf("(other)");
printf("\n");
}
}
/*
* =============================================================================
* Traversal state
* =============================================================================
*/
static bool inside_declaration = false;
/*
* =============================================================================
* AST traversal
* =============================================================================
*/
/*
static bool
introspect(const ASTNode* node, const NodeType type)
{
assert(node);
ASTNode* parent = node->parent;
while (parent) {
if (parent->type == type)
return true;
else
parent = parent->parent;
}
return false;
}
*/
static void
traverse(const ASTNode* node)
{
// Prefix translation
if (!inside_declaration && translate(node->prefix))
fprintf(CUDAHEADER, "%s", translate(node->prefix));
// Prefix logic
if (node->type == NODE_COMPOUND_STATEMENT) {
// if (node->type == NODE_FUNCTION_PARAMETER_DECLARATION ||
// node->type == NODE_ITERATION_STATEMENT) {
assert(current_nest < MAX_NESTS);
++current_nest;
num_symbols[current_nest] = num_symbols[current_nest - 1];
}
if (node->type == NODE_DECLARATION)
inside_declaration = true;
if (node->type == NODE_FUNCTION_PARAMETER_DECLARATION) {
// Boilerplates
const ASTNode* typedecl = node->parent->lhs->lhs;
const ASTNode* typequal = typedecl->lhs;
printf("typedecl %d\n", typedecl->type);
assert(typedecl->type == NODE_TYPE_DECLARATION);
if (typequal->type == NODE_TYPE_QUALIFIER) {
if (typequal->token == KERNEL) {
fprintf(CUDAHEADER, "GEN_KERNEL_PARAM_BOILERPLATE");
if (node->lhs != NULL) {
fprintf(
stderr,
"Syntax error: function parameters for Kernel functions not allowed!\n");
}
}
else if (typequal->token == PREPROCESSED) {
fprintf(CUDAHEADER, "GEN_PREPROCESSED_PARAM_BOILERPLATE, ");
}
}
}
if (node->type == NODE_COMPOUND_STATEMENT) {
if (node->parent->type == NODE_FUNCTION_DEFINITION) {
const Symbol* symbol = symboltable_lookup(node->parent->lhs->lhs->rhs->buffer);
if (symbol && symbol->type_qualifier == KERNEL) {
fprintf(CUDAHEADER, "GEN_KERNEL_BUILTIN_VARIABLES_BOILERPLATE();");
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == IN) {
fprintf(CUDAHEADER, "const %sData %s = READ(handle_%s);\n",
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier, symbol_table[i].identifier);
}
else if (symbol_table[i].type_qualifier == OUT) {
fprintf(CUDAHEADER, "%s %s = READ_OUT(handle_%s);",
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier, symbol_table[i].identifier);
}
}
}
}
}
// Traverse LHS
if (node->lhs)
traverse(node->lhs);
// Infix translation
if (!inside_declaration && translate(node->infix))
fprintf(CUDAHEADER, "%s", translate(node->infix));
// Infix logic
// If the node is a subscript expression and the expression list inside it is not empty
if (node->type == NODE_MULTIDIM_SUBSCRIPT_EXPRESSION && node->rhs)
fprintf(CUDAHEADER, "IDX(");
// Traverse RHS
if (node->rhs)
traverse(node->rhs);
// Add new symbols to the symbol table
if (node->type == NODE_DECLARATION) {
int stype;
ASTNode* tmp = node->parent;
while (tmp->type == NODE_DECLARATION_LIST)
tmp = tmp->parent;
if (tmp->type == NODE_FUNCTION_DECLARATION)
stype = SYMBOLTYPE_FUNCTION;
else if (tmp->type == NODE_FUNCTION_PARAMETER_DECLARATION)
stype = SYMBOLTYPE_FUNCTION_PARAMETER;
else
stype = SYMBOLTYPE_OTHER;
const ASTNode* tdeclaration = node->lhs;
const int tqualifier = tdeclaration->rhs ? tdeclaration->lhs->token : 0;
const int tspecifier = tdeclaration->rhs ? tdeclaration->rhs->token
: tdeclaration->lhs->token;
const char* identifier = node->rhs->type == NODE_IDENTIFIER ? node->rhs->buffer
: node->rhs->lhs->buffer;
add_symbol(stype, tqualifier, tspecifier, identifier);
printf("Added %s\n", identifier);
// Translate the new symbol
if (tqualifier == UNIFORM) {
// Do nothing
}
else if (tqualifier == KERNEL) {
fprintf(CUDAHEADER, "%s %s\n%s", //
translate(tqualifier), translate(tspecifier), identifier);
}
else if (tqualifier == DEVICE) {
fprintf(CUDAHEADER, "%s %s\n%s", //
translate(tqualifier), translate(tspecifier), identifier);
}
else if (tqualifier == PREPROCESSED) {
fprintf(CUDAHEADER, "%s %s\npreprocessed_%s", //
translate(tqualifier), translate(tspecifier), identifier);
}
else if (stype == SYMBOLTYPE_FUNCTION) {
// Stencil assembly stage device function
fprintf(CUDAHEADER, "%s %s\n%s", //
translate(DEVICE), translate(tspecifier), identifier);
}
else if (stype == SYMBOLTYPE_FUNCTION_PARAMETER) {
tmp = tmp->parent;
assert(tmp->type = NODE_FUNCTION_DECLARATION);
// TODO FIX not to use symboltable_lookup
const Symbol* parent_function = symboltable_lookup(tmp->lhs->rhs->buffer);
assert(parent_function);
if (tqualifier == IN || tqualifier == OUT) {
if (tmp->lhs->lhs->lhs->token == DEVICE) {
fprintf(CUDAHEADER, "const %sData& %s", //
translate(tspecifier), identifier);
}
else {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
/*
if (parent_function->type_qualifier == 0 ||
parent_function->type_qualifier == PREPROCESSED) {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
else {
fprintf(CUDAHEADER, "const %sData& %s", //
translate(tspecifier), identifier);
}*/
}
else {
print_symbol2(&symbol_table[num_symbols[current_nest] - 1]);
}
}
else if (tqualifier == IN || tqualifier == OUT) { // Global in/out declarator
fprintf(CUDAHEADER, "static __device__ const ");
fprintf(CUDAHEADER, "%s ", tspecifier == SCALARFIELD ? "int" : "int3");
fprintf(CUDAHEADER, "handle_%s ", identifier);
fprintf(CUDAHEADER, "%s ", tspecifier == SCALARFIELD ? "" : "= make_int3");
}
else {
// Do a regular translation
print_symbol2(&symbol_table[num_symbols[current_nest] - 1]);
}
if (node->rhs->type == NODE_ARRAY_DECLARATION) {
// Traverse the expression once again, this time with
// "inside_declaration" flag off
inside_declaration = false;
fprintf(CUDAHEADER, "%s ", translate(node->rhs->infix));
if (node->rhs->rhs)
traverse(node->rhs->rhs);
fprintf(CUDAHEADER, "%s ", translate(node->rhs->postfix));
}
}
else {
// Translate existing symbols
const Symbol* symbol = symboltable_lookup(node->buffer);
if (symbol) {
// Uniforms
if (symbol->type_qualifier == UNIFORM) {
fprintf(CUDAHEADER, "DCONST(%s) ", symbol->identifier);
}
else if (node->parent->type != NODE_DECLARATION) {
// Regular translation
if (translate(node->token))
fprintf(CUDAHEADER, "%s ", translate(node->token));
if (node->buffer)
fprintf(CUDAHEADER, "%s ", node->buffer);
}
}
else if (!inside_declaration) {
// Literal translation
if (translate(node->token))
fprintf(CUDAHEADER, "%s ", translate(node->token));
if (node->buffer) {
if (node->type == NODE_REAL_NUMBER) {
fprintf(CUDAHEADER, "%s(%s) ", translate(SCALAR),
node->buffer); // Cast to correct precision
}
else {
fprintf(CUDAHEADER, "%s ", node->buffer);
}
}
}
}
// Postfix logic
// If the node is a subscript expression and the expression list inside it is not empty
if (node->type == NODE_MULTIDIM_SUBSCRIPT_EXPRESSION && node->rhs)
fprintf(CUDAHEADER, ")"); // Closing bracket of IDX()
if (node->type == NODE_COMPOUND_STATEMENT) {
// if (node->type == NODE_FUNCTION_DEFINITION || node->type == NODE_ITERATION_STATEMENT) {
assert(current_nest > 0);
--current_nest;
// Drop function parameters
while (symbol_table[num_symbols[current_nest] - 1].type == SYMBOLTYPE_FUNCTION_PARAMETER)
--num_symbols[current_nest];
// Drop temporaries declared with iteration statements
// TODO
printf("Dropped rest of the symbol table, from %lu to %lu\n", num_symbols[current_nest + 1],
num_symbols[current_nest]);
// Kernel writeback boilerplate
if (node->parent->type == NODE_FUNCTION_DEFINITION) {
const Symbol* symbol = symboltable_lookup(node->parent->lhs->lhs->rhs->buffer);
if (symbol && symbol->type_qualifier == KERNEL) {
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == OUT) {
fprintf(CUDAHEADER, "WRITE_OUT(handle_%s, %s);\n",
symbol_table[i].identifier, symbol_table[i].identifier);
}
}
}
}
}
if (node->type == NODE_DECLARATION)
inside_declaration = false;
// Postfix translation
if (!inside_declaration && translate(node->postfix))
fprintf(CUDAHEADER, "%s", translate(node->postfix));
}
static void
generate_preprocessed_structures(void)
{
// Data structure
fprintf(CUDAHEADER, "\n");
// Read data to the data struct
fprintf(CUDAHEADER, "static __device__ __forceinline__ AcRealData\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int handle)\
{\n\
%sData data;\n",
translate(SCALAR));
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER,
"data.%s = preprocessed_%s(vertexIdx, globalVertexIdx, buf[handle]);\n",
symbol_table[i].identifier, symbol_table[i].identifier);
}
fprintf(CUDAHEADER, "return data;\n");
fprintf(CUDAHEADER, "}\n");
// Functions for accessing the data struct members
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "static __device__ __forceinline__ %s\
%s(const AcRealData& data)\
{\n\
return data.%s;\
}\n",
translate(symbol_table[i].type_specifier), symbol_table[i].identifier,
symbol_table[i].identifier);
}
// Syntactic sugar: Vector data struct
fprintf(CUDAHEADER, "static __device__ __forceinline__ AcReal3Data\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int3& handle)\
{\
AcReal3Data data;\
\
data.x = read_data(vertexIdx, globalVertexIdx, buf, handle.x);\
data.y = read_data(vertexIdx, globalVertexIdx, buf, handle.y);\
data.z = read_data(vertexIdx, globalVertexIdx, buf, handle.z);\
\
return data;\
}\
");
const size_t max_buflen = 65536;
char buffer[max_buflen];
rewind(CUDAHEADER);
const size_t buflen = fread(buffer, sizeof(char), max_buflen, CUDAHEADER);
fclose(CUDAHEADER);
CUDAHEADER = fopen("user_kernels.h", "w+");
fprintf(CUDAHEADER, "#pragma once\n");
fprintf(CUDAHEADER, "typedef struct {\n");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "%s %s;\n", translate(symbol_table[i].type_specifier),
symbol_table[i].identifier);
}
fprintf(CUDAHEADER, "} %sData;\n", translate(SCALAR));
fprintf(CUDAHEADER, "typedef struct {\
AcRealData x;\
AcRealData y;\
AcRealData z;\
} AcReal3Data;\n");
fprintf(CUDAHEADER, "static __device__ AcRealData\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int handle);\n");
fprintf(CUDAHEADER, "static __device__ AcReal3Data\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int3& handle);\n");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "static __device__ %s %s(const AcRealData& data);\n",
translate(symbol_table[i].type_specifier), symbol_table[i].identifier);
}
fwrite(buffer, sizeof(char), buflen, CUDAHEADER);
}
static void
generate_header(void)
{
fprintf(DSLHEADER, "#pragma once\n");
// Int params
fprintf(DSLHEADER, "#define AC_FOR_USER_INT_PARAM_TYPES(FUNC)");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_specifier == INT && symbol_table[i].type_qualifier == UNIFORM) {
fprintf(DSLHEADER, "\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
fprintf(DSLHEADER, "\n\n");
// Int3 params
fprintf(DSLHEADER, "#define AC_FOR_USER_INT3_PARAM_TYPES(FUNC)");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_specifier == INT3 && symbol_table[i].type_qualifier == UNIFORM) {
fprintf(DSLHEADER, "\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
fprintf(DSLHEADER, "\n\n");
// Scalar params
fprintf(DSLHEADER, "#define AC_FOR_USER_REAL_PARAM_TYPES(FUNC)");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_specifier == SCALAR && symbol_table[i].type_qualifier == UNIFORM) {
fprintf(DSLHEADER, "\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
fprintf(DSLHEADER, "\n\n");
// Vector params
fprintf(DSLHEADER, "#define AC_FOR_USER_REAL3_PARAM_TYPES(FUNC)");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_specifier == VECTOR && symbol_table[i].type_qualifier == UNIFORM) {
fprintf(DSLHEADER, "\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
fprintf(DSLHEADER, "\n\n");
// Scalar fields
fprintf(DSLHEADER, "#define AC_FOR_VTXBUF_HANDLES(FUNC)");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_specifier == SCALARFIELD &&
symbol_table[i].type_qualifier == UNIFORM) {
fprintf(DSLHEADER, "\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
fprintf(DSLHEADER, "\n\n");
// Scalar arrays
fprintf(DSLHEADER, "#define AC_FOR_SCALARARRAY_HANDLES(FUNC)");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_specifier == SCALARARRAY &&
symbol_table[i].type_qualifier == UNIFORM) {
fprintf(DSLHEADER, "\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
fprintf(DSLHEADER, "\n\n");
}
static void
generate_library_hooks(void)
{
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == KERNEL) {
fprintf(CUDAHEADER, "GEN_DEVICE_FUNC_HOOK(%s)\n", symbol_table[i].identifier);
}
}
}
int
main(int argc, char** argv)
{
root = astnode_create(NODE_UNKNOWN, NULL, NULL);
const int retval = yyparse();
if (retval) {
fprintf(stderr, "COMPILATION FAILED\n");
return EXIT_FAILURE;
}
DSLHEADER = fopen("user_defines.h", "w+");
CUDAHEADER = fopen("user_kernels.h", "w+");
assert(DSLHEADER);
assert(CUDAHEADER);
// Add built-in params
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nx");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_ny");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nz");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_mx");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_my");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_mz");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nx_min");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_ny_min");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nz_min");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nx_max");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_ny_max");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nz_max");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_mxy");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nxy");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT, "AC_nxyz");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT3, "AC_global_grid_n");
add_symbol(SYMBOLTYPE_OTHER, UNIFORM, INT3, "AC_multigpu_offset");
// Generate
traverse(root);
generate_header();
generate_preprocessed_structures();
generate_library_hooks();
print_symbol_table();
// Cleanup
fclose(DSLHEADER);
fclose(CUDAHEADER);
astnode_destroy(root);
fprintf(stdout, "COMPILATION SUCCESS\n");
return EXIT_SUCCESS;
}