681 lines
24 KiB
Plaintext
681 lines
24 KiB
Plaintext
#include <stdderiv.h>
|
|
|
|
#define LDENSITY (1)
|
|
#define LHYDRO (1)
|
|
#define LMAGNETIC (1)
|
|
#define LENTROPY (1)
|
|
#define LTEMPERATURE (0)
|
|
#define LFORCING (1)
|
|
#define LUPWD (1)
|
|
#define LSINK (0)
|
|
|
|
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
|
|
#define H_CONST (0) // TODO: make an actual config parameter
|
|
#define C_CONST (0) // TODO: make an actual config parameter
|
|
|
|
// Int params
|
|
uniform int AC_max_steps;
|
|
uniform int AC_save_steps;
|
|
uniform int AC_bin_steps;
|
|
uniform int AC_bc_type;
|
|
uniform int AC_start_step;
|
|
|
|
// Real params
|
|
uniform Scalar AC_dt;
|
|
uniform Scalar AC_max_time;
|
|
// Spacing
|
|
uniform Scalar AC_dsmin;
|
|
// physical grid
|
|
uniform Scalar AC_xlen;
|
|
uniform Scalar AC_ylen;
|
|
uniform Scalar AC_zlen;
|
|
uniform Scalar AC_xorig;
|
|
uniform Scalar AC_yorig;
|
|
uniform Scalar AC_zorig;
|
|
// Physical units
|
|
uniform Scalar AC_unit_density;
|
|
uniform Scalar AC_unit_velocity;
|
|
uniform Scalar AC_unit_length;
|
|
// properties of gravitating star
|
|
uniform Scalar AC_star_pos_x;
|
|
uniform Scalar AC_star_pos_y;
|
|
uniform Scalar AC_star_pos_z;
|
|
uniform Scalar AC_M_star;
|
|
// properties of sink particle
|
|
uniform Scalar AC_sink_pos_x;
|
|
uniform Scalar AC_sink_pos_y;
|
|
uniform Scalar AC_sink_pos_z;
|
|
uniform Scalar AC_M_sink;
|
|
uniform Scalar AC_M_sink_init;
|
|
uniform Scalar AC_M_sink_Msun;
|
|
uniform Scalar AC_soft;
|
|
uniform Scalar AC_accretion_range;
|
|
uniform Scalar AC_switch_accretion;
|
|
// Run params
|
|
uniform Scalar AC_cdt;
|
|
uniform Scalar AC_cdtv;
|
|
uniform Scalar AC_cdts;
|
|
uniform Scalar AC_nu_visc;
|
|
uniform Scalar AC_cs_sound;
|
|
uniform Scalar AC_eta;
|
|
uniform Scalar AC_mu0;
|
|
uniform Scalar AC_cp_sound;
|
|
uniform Scalar AC_gamma;
|
|
uniform Scalar AC_cv_sound;
|
|
uniform Scalar AC_lnT0;
|
|
uniform Scalar AC_lnrho0;
|
|
uniform Scalar AC_zeta;
|
|
uniform Scalar AC_trans;
|
|
// Other
|
|
uniform Scalar AC_bin_save_t;
|
|
// Initial condition params
|
|
uniform Scalar AC_ampl_lnrho;
|
|
uniform Scalar AC_ampl_uu;
|
|
uniform Scalar AC_angl_uu;
|
|
uniform Scalar AC_lnrho_edge;
|
|
uniform Scalar AC_lnrho_out;
|
|
// Forcing parameters. User configured.
|
|
uniform Scalar AC_forcing_magnitude;
|
|
uniform Scalar AC_relhel;
|
|
uniform Scalar AC_kmin;
|
|
uniform Scalar AC_kmax;
|
|
// Forcing parameters. Set by the generator.
|
|
uniform Scalar AC_forcing_phase;
|
|
uniform Scalar AC_k_forcex;
|
|
uniform Scalar AC_k_forcey;
|
|
uniform Scalar AC_k_forcez;
|
|
uniform Scalar AC_kaver;
|
|
uniform Scalar AC_ff_hel_rex;
|
|
uniform Scalar AC_ff_hel_rey;
|
|
uniform Scalar AC_ff_hel_rez;
|
|
uniform Scalar AC_ff_hel_imx;
|
|
uniform Scalar AC_ff_hel_imy;
|
|
uniform Scalar AC_ff_hel_imz;
|
|
// Additional helper params // (deduced from other params do not set these directly!)
|
|
uniform Scalar AC_G_const;
|
|
uniform Scalar AC_GM_star;
|
|
uniform Scalar AC_unit_mass;
|
|
uniform Scalar AC_sq2GM_star;
|
|
uniform Scalar AC_cs2_sound;
|
|
|
|
/*
|
|
* =============================================================================
|
|
* User-defined vertex buffers
|
|
* =============================================================================
|
|
*/
|
|
#if LENTROPY
|
|
uniform ScalarField VTXBUF_LNRHO;
|
|
uniform ScalarField VTXBUF_UUX;
|
|
uniform ScalarField VTXBUF_UUY;
|
|
uniform ScalarField VTXBUF_UUZ;
|
|
uniform ScalarField VTXBUF_AX;
|
|
uniform ScalarField VTXBUF_AY;
|
|
uniform ScalarField VTXBUF_AZ;
|
|
uniform ScalarField VTXBUF_ENTROPY;
|
|
#elif LMAGNETIC
|
|
uniform ScalarField VTXBUF_LNRHO;
|
|
uniform ScalarField VTXBUF_UUX;
|
|
uniform ScalarField VTXBUF_UUY;
|
|
uniform ScalarField VTXBUF_UUZ;
|
|
uniform ScalarField VTXBUF_AX;
|
|
uniform ScalarField VTXBUF_AY;
|
|
uniform ScalarField VTXBUF_AZ;
|
|
#elif LHYDRO
|
|
uniform ScalarField VTXBUF_LNRHO;
|
|
uniform ScalarField VTXBUF_UUX;
|
|
uniform ScalarField VTXBUF_UUY;
|
|
uniform ScalarField VTXBUF_UUZ;
|
|
#else
|
|
uniform ScalarField VTXBUF_LNRHO;
|
|
#endif
|
|
|
|
#if LSINK
|
|
uniform ScalarField VTXBUF_ACCRETION;
|
|
#endif
|
|
|
|
#if LUPWD
|
|
|
|
Preprocessed Scalar
|
|
der6x_upwd(in ScalarField vertex)
|
|
{
|
|
Scalar inv_ds = AC_inv_dsx;
|
|
|
|
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
|
|
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
|
|
Scalar(15.0) * (vertex[vertexIdx.x + 1, vertexIdx.y, vertexIdx.z] +
|
|
vertex[vertexIdx.x - 1, vertexIdx.y, vertexIdx.z]) -
|
|
Scalar(6.0) * (vertex[vertexIdx.x + 2, vertexIdx.y, vertexIdx.z] +
|
|
vertex[vertexIdx.x - 2, vertexIdx.y, vertexIdx.z]) +
|
|
vertex[vertexIdx.x + 3, vertexIdx.y, vertexIdx.z] +
|
|
vertex[vertexIdx.x - 3, vertexIdx.y, vertexIdx.z])};
|
|
}
|
|
|
|
Preprocessed Scalar
|
|
der6y_upwd(in ScalarField vertex)
|
|
{
|
|
Scalar inv_ds = AC_inv_dsy;
|
|
|
|
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
|
|
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
|
|
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y + 1, vertexIdx.z] +
|
|
vertex[vertexIdx.x, vertexIdx.y - 1, vertexIdx.z]) -
|
|
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y + 2, vertexIdx.z] +
|
|
vertex[vertexIdx.x, vertexIdx.y - 2, vertexIdx.z]) +
|
|
vertex[vertexIdx.x, vertexIdx.y + 3, vertexIdx.z] +
|
|
vertex[vertexIdx.x, vertexIdx.y - 3, vertexIdx.z])};
|
|
}
|
|
|
|
Preprocessed Scalar
|
|
der6z_upwd(in ScalarField vertex)
|
|
{
|
|
Scalar inv_ds = AC_inv_dsz;
|
|
|
|
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
|
|
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
|
|
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 1] +
|
|
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 1]) -
|
|
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 2] +
|
|
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 2]) +
|
|
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 3] +
|
|
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 3])};
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if LUPWD
|
|
Device Scalar
|
|
upwd_der6(in VectorField uu, in ScalarField lnrho)
|
|
{
|
|
Scalar uux = fabs(value(uu).x);
|
|
Scalar uuy = fabs(value(uu).y);
|
|
Scalar uuz = fabs(value(uu).z);
|
|
return (Scalar){uux * der6x_upwd(lnrho) + uuy * der6y_upwd(lnrho) + uuz * der6z_upwd(lnrho)};
|
|
}
|
|
#endif
|
|
|
|
Device Matrix
|
|
gradients(in VectorField uu)
|
|
{
|
|
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
|
}
|
|
|
|
#if LSINK
|
|
Device Vector
|
|
sink_gravity(int3 globalVertexIdx){
|
|
int accretion_switch = int(AC_switch_accretion);
|
|
if (accretion_switch == 1){
|
|
Vector force_gravity;
|
|
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
|
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
|
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
|
|
const Scalar sink_mass = AC_M_sink;
|
|
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
|
AC_sink_pos_y,
|
|
AC_sink_pos_z};
|
|
const Scalar distance = length(grid_pos - sink_pos);
|
|
const Scalar soft = AC_soft;
|
|
//MV: The commit 083ff59 had AC_G_const defined wrong here in DSL making it exxessively strong.
|
|
//MV: Scalar gravity_magnitude = ... below is correct!
|
|
const Scalar gravity_magnitude = (AC_G_const * sink_mass) / pow(((distance * distance) + soft*soft), 1.5);
|
|
const Vector direction = (Vector){(sink_pos.x - grid_pos.x) / distance,
|
|
(sink_pos.y - grid_pos.y) / distance,
|
|
(sink_pos.z - grid_pos.z) / distance};
|
|
force_gravity = gravity_magnitude * direction;
|
|
return force_gravity;
|
|
} else {
|
|
return (Vector){0.0, 0.0, 0.0};
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
#if LSINK
|
|
// Give Truelove density
|
|
Device Scalar
|
|
truelove_density(in ScalarField lnrho){
|
|
const Scalar rho = exp(value(lnrho));
|
|
const Scalar Jeans_length_squared = (M_PI * AC_cs2_sound) / (AC_G_const * rho);
|
|
const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) / (AC_G_const * AC_dsx * AC_dsx);
|
|
//TODO: AC_dsx will cancel out, deal with it later for optimization.
|
|
|
|
Scalar accretion_rho = TJ_rho;
|
|
|
|
return accretion_rho;
|
|
}
|
|
|
|
// This controls accretion of density/mass to the sink particle.
|
|
Device Scalar
|
|
sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
|
|
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
|
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
|
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
|
|
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
|
AC_sink_pos_y,
|
|
AC_sink_pos_z};
|
|
const Scalar profile_range = AC_accretion_range;
|
|
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
|
int accretion_switch = AC_switch_accretion;
|
|
Scalar accretion_density;
|
|
Scalar weight;
|
|
|
|
if (accretion_switch == 1){
|
|
if ((accretion_distance) <= profile_range){
|
|
//weight = Scalar(1.0);
|
|
//Hann window function
|
|
Scalar window_ratio = accretion_distance/profile_range;
|
|
weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio));
|
|
} else {
|
|
weight = Scalar(0.0);
|
|
}
|
|
|
|
//Truelove criterion is used as a kind of arbitrary density floor.
|
|
const Scalar lnrho_min = log(truelove_density(lnrho));
|
|
Scalar rate;
|
|
if (value(lnrho) > lnrho_min) {
|
|
rate = (exp(value(lnrho)) - exp(lnrho_min)) / dt;
|
|
} else {
|
|
rate = Scalar(0.0);
|
|
}
|
|
accretion_density = weight * rate ;
|
|
} else {
|
|
accretion_density = Scalar(0.0);
|
|
}
|
|
return accretion_density;
|
|
}
|
|
|
|
// This controls accretion of velocity to the sink particle.
|
|
Device Vector
|
|
sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
|
|
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
|
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
|
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
|
|
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
|
AC_sink_pos_y,
|
|
AC_sink_pos_z};
|
|
const Scalar profile_range = AC_accretion_range;
|
|
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
|
int accretion_switch = AC_switch_accretion;
|
|
Vector accretion_velocity;
|
|
|
|
if (accretion_switch == 1){
|
|
Scalar weight;
|
|
// Step function weighting
|
|
// Arch of a cosine function?
|
|
// Cubic spline x^3 - x in range [-0.5 , 0.5]
|
|
if ((accretion_distance) <= profile_range){
|
|
//weight = Scalar(1.0);
|
|
//Hann window function
|
|
Scalar window_ratio = accretion_distance/profile_range;
|
|
weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio));
|
|
} else {
|
|
weight = Scalar(0.0);
|
|
}
|
|
|
|
|
|
Vector rate;
|
|
// MV: Could we use divergence here ephasize velocitie which are compressive and
|
|
// MV: not absorbins stuff that would not be accreted anyway?
|
|
if (length(value(uu)) > Scalar(0.0)) {
|
|
rate = (Scalar(1.0)/dt) * value(uu);
|
|
} else {
|
|
rate = (Vector){0.0, 0.0, 0.0};
|
|
}
|
|
accretion_velocity = weight * rate ;
|
|
} else {
|
|
accretion_velocity = (Vector){0.0, 0.0, 0.0};
|
|
}
|
|
return accretion_velocity;
|
|
}
|
|
#endif
|
|
|
|
|
|
Device Scalar
|
|
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
|
{
|
|
return -dot(value(uu), gradient(lnrho))
|
|
#if LUPWD
|
|
// This is a corrective hyperdiffusion term for upwinding.
|
|
+ upwd_der6(uu, lnrho)
|
|
#endif
|
|
#if LSINK
|
|
- sink_accretion(globalVertexIdx, lnrho, dt) / exp(value(lnrho))
|
|
#endif
|
|
- divergence(uu);
|
|
}
|
|
|
|
|
|
|
|
#if LENTROPY
|
|
Device Vector
|
|
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt)
|
|
{
|
|
const Matrix S = stress_tensor(uu);
|
|
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
|
|
(AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
|
|
const Vector j = (Scalar(1.0) / AC_mu0) *
|
|
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
|
const Vector B = curl(aa);
|
|
// TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
|
|
const Scalar inv_rho = Scalar(1.0) / exp(value(lnrho));
|
|
|
|
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
|
|
// \1
|
|
const Vector mom = -mul(gradients(uu), value(uu)) -
|
|
cs2 * ((Scalar(1.0) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
|
|
inv_rho * cross(j, B) +
|
|
AC_nu_visc *
|
|
(laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
|
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
|
AC_zeta * gradient_of_divergence(uu)
|
|
#if LSINK
|
|
//Gravity term
|
|
+ sink_gravity(globalVertexIdx)
|
|
//Corresponding loss of momentum
|
|
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
|
|
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
|
|
;
|
|
#else
|
|
;
|
|
#endif
|
|
return mom;
|
|
}
|
|
#elif LTEMPERATURE
|
|
Device Vector
|
|
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
|
{
|
|
Vector mom;
|
|
|
|
const Matrix S = stress_tensor(uu);
|
|
|
|
const Vector pressure_term = (AC_cp_sound - AC_cv_sound) *
|
|
(gradient(tt) + value(tt) * gradient(lnrho));
|
|
|
|
mom = -mul(gradients(uu), value(uu)) - pressure_term +
|
|
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
|
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
|
AC_zeta * gradient_of_divergence(uu)
|
|
#if LSINK
|
|
+ sink_gravity(globalVertexIdx);
|
|
#else
|
|
;
|
|
#endif
|
|
|
|
#if LGRAVITY
|
|
mom = mom - (Vector){0, 0, -10.0};
|
|
#endif
|
|
return mom;
|
|
}
|
|
#else
|
|
Device Vector
|
|
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
|
{
|
|
Vector mom;
|
|
|
|
const Matrix S = stress_tensor(uu);
|
|
|
|
// Isothermal: we have constant speed of sound
|
|
|
|
mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) +
|
|
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
|
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
|
AC_zeta * gradient_of_divergence(uu)
|
|
#if LSINK
|
|
+ sink_gravity(globalVertexIdx)
|
|
//Corresponding loss of momentum
|
|
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
|
|
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
|
|
;
|
|
#else
|
|
;
|
|
#endif
|
|
|
|
#if LGRAVITY
|
|
mom = mom - (Vector){0, 0, -10.0};
|
|
#endif
|
|
|
|
return mom;
|
|
}
|
|
#endif
|
|
|
|
Device Vector
|
|
induction(in VectorField uu, in VectorField aa)
|
|
{
|
|
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
|
// x A)) in order to avoid taking the first derivative twice (did the math,
|
|
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
|
// u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ])
|
|
const Vector B = curl(aa);
|
|
const Vector grad_div = gradient_of_divergence(aa);
|
|
const Vector lap = laplace_vec(aa);
|
|
|
|
// Note, AC_mu0 is cancelled out
|
|
const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap);
|
|
|
|
return ind;
|
|
}
|
|
|
|
#if LENTROPY
|
|
Device Scalar
|
|
lnT(in ScalarField ss, in ScalarField lnrho)
|
|
{
|
|
return AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
|
|
(AC_gamma - Scalar(1.0)) * (value(lnrho) - AC_lnrho0);
|
|
}
|
|
|
|
// Nabla dot (K nabla T) / (rho T)
|
|
Device Scalar
|
|
heat_conduction(in ScalarField ss, in ScalarField lnrho)
|
|
{
|
|
const Scalar inv_AC_cp_sound = AcReal(1.0) / AC_cp_sound;
|
|
|
|
const Vector grad_ln_chi = -gradient(lnrho);
|
|
|
|
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
|
|
(AC_gamma - AcReal(1.0)) * laplace(lnrho);
|
|
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
|
|
(AC_gamma - AcReal(1.0)) * gradient(lnrho);
|
|
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) +
|
|
grad_ln_chi;
|
|
|
|
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound);
|
|
return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
|
|
}
|
|
|
|
Device Scalar
|
|
heating(const int i, const int j, const int k)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
Device Scalar
|
|
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
|
|
{
|
|
const Matrix S = stress_tensor(uu);
|
|
const Scalar inv_pT = Scalar(1.0) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
|
|
const Vector j = (Scalar(1.0) / AC_mu0) *
|
|
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
|
const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) +
|
|
Scalar(2.0) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
|
|
AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
|
|
|
|
return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho);
|
|
}
|
|
#endif
|
|
|
|
#if LTEMPERATURE
|
|
Device Scalar
|
|
heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
|
{
|
|
const Matrix S = stress_tensor(uu);
|
|
const Scalar heat_diffusivity_k = 0.0008; // 8e-4;
|
|
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) +
|
|
heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) +
|
|
AC_nu_visc * contract(S) * (Scalar(1.0) / AC_cv_sound) -
|
|
(AC_gamma - 1) * value(tt) * divergence(uu);
|
|
}
|
|
#endif
|
|
|
|
#if LFORCING
|
|
Device Vector
|
|
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude){
|
|
int accretion_switch = AC_switch_accretion;
|
|
|
|
if (accretion_switch == 0){
|
|
return magnitude * cross(normalized(b - a), (Vector){ 0, 0, 1}); // Vortex
|
|
} else {
|
|
return (Vector){0,0,0};
|
|
}
|
|
}
|
|
Device Vector
|
|
simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude){
|
|
int accretion_switch = AC_switch_accretion;
|
|
if (accretion_switch == 0){
|
|
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
|
|
} else {
|
|
return (Vector){0,0,0};
|
|
}
|
|
}
|
|
|
|
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable
|
|
// helicity
|
|
Device Vector
|
|
helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi)
|
|
{
|
|
// JP: This looks wrong:
|
|
// 1) Should it be AC_dsx * AC_nx instead of AC_dsx * AC_ny?
|
|
// 2) Should you also use globalGrid.n instead of the local n?
|
|
// MV: You are rigth. Made a quickfix. I did not see the error because multigpu is split
|
|
// in z direction not y direction.
|
|
// 3) Also final point: can we do this with vectors/quaternions instead?
|
|
// Tringonometric functions are much more expensive and inaccurate/
|
|
// MV: Good idea. No an immediate priority.
|
|
// Fun related article:
|
|
// https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
|
|
xx.x = xx.x * (2.0 * M_PI / (AC_dsx * globalGridN.x));
|
|
xx.y = xx.y * (2.0 * M_PI / (AC_dsy * globalGridN.y));
|
|
xx.z = xx.z * (2.0 * M_PI / (AC_dsz * globalGridN.z));
|
|
|
|
Scalar cos_phi = cos(phi);
|
|
Scalar sin_phi = sin(phi);
|
|
Scalar cos_k_dot_x = cos(dot(k_force, xx));
|
|
Scalar sin_k_dot_x = sin(dot(k_force, xx));
|
|
// Phase affect only the x-component
|
|
// Scalar real_comp = cos_k_dot_x;
|
|
// Scalar imag_comp = sin_k_dot_x;
|
|
Scalar real_comp_phase = cos_k_dot_x * cos_phi - sin_k_dot_x * sin_phi;
|
|
Scalar imag_comp_phase = cos_k_dot_x * sin_phi + sin_k_dot_x * cos_phi;
|
|
|
|
Vector force = (Vector){ff_re.x * real_comp_phase - ff_im.x * imag_comp_phase,
|
|
ff_re.y * real_comp_phase - ff_im.y * imag_comp_phase,
|
|
ff_re.z * real_comp_phase - ff_im.z * imag_comp_phase};
|
|
|
|
return force;
|
|
}
|
|
|
|
Device Vector
|
|
forcing(int3 globalVertexIdx, Scalar dt)
|
|
{
|
|
int accretion_switch = AC_switch_accretion;
|
|
if (accretion_switch == 0){
|
|
|
|
Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx,
|
|
globalGridN.y * AC_dsy,
|
|
globalGridN.z * AC_dsz}; // source (origin)
|
|
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
|
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
|
|
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
|
|
const Scalar cs2 = AC_cs2_sound;
|
|
const Scalar cs = sqrt(cs2);
|
|
|
|
//Placeholders until determined properly
|
|
Scalar magnitude = AC_forcing_magnitude;
|
|
Scalar phase = AC_forcing_phase;
|
|
Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez};
|
|
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
|
|
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
|
|
|
|
|
|
//Determine that forcing funtion type at this point.
|
|
//Vector force = simple_vortex_forcing(a, xx, magnitude);
|
|
//Vector force = simple_outward_flow_forcing(a, xx, magnitude);
|
|
Vector force = helical_forcing(magnitude, k_force, xx, ff_re,ff_im, phase);
|
|
|
|
//Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
|
|
const Scalar NN = cs*sqrt(AC_kaver*cs);
|
|
//MV: Like in the Pencil Code. I don't understandf the logic here.
|
|
force.x = sqrt(dt)*NN*force.x;
|
|
force.y = sqrt(dt)*NN*force.y;
|
|
force.z = sqrt(dt)*NN*force.z;
|
|
|
|
if (is_valid(force)) { return force; }
|
|
else { return (Vector){0, 0, 0}; }
|
|
} else {
|
|
return (Vector){0,0,0};
|
|
}
|
|
}
|
|
#endif // LFORCING
|
|
|
|
// Declare input and output arrays using locations specified in the
|
|
// array enum in astaroth.h
|
|
in ScalarField lnrho(VTXBUF_LNRHO);
|
|
out ScalarField out_lnrho(VTXBUF_LNRHO);
|
|
|
|
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
|
out VectorField out_uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
|
|
|
#if LMAGNETIC
|
|
in VectorField aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
|
|
out VectorField out_aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
|
|
#endif
|
|
|
|
#if LENTROPY
|
|
in ScalarField ss(VTXBUF_ENTROPY);
|
|
out ScalarField out_ss(VTXBUF_ENTROPY);
|
|
#endif
|
|
|
|
#if LTEMPERATURE
|
|
in ScalarField tt(VTXBUF_TEMPERATURE);
|
|
out ScalarField out_tt(VTXBUF_TEMPERATURE);
|
|
#endif
|
|
|
|
#if LSINK
|
|
in ScalarField accretion(VTXBUF_ACCRETION);
|
|
out ScalarField out_accretion(VTXBUF_ACCRETION);
|
|
#endif
|
|
|
|
Kernel void
|
|
solve()
|
|
{
|
|
Scalar dt = AC_dt;
|
|
out_lnrho = rk3(out_lnrho, lnrho, continuity(globalVertexIdx, uu, lnrho, dt), dt);
|
|
|
|
#if LMAGNETIC
|
|
out_aa = rk3(out_aa, aa, induction(uu, aa), dt);
|
|
#endif
|
|
|
|
#if LENTROPY
|
|
out_uu = rk3(out_uu, uu, momentum(globalVertexIdx, uu, lnrho, ss, aa, dt), dt);
|
|
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
|
|
#elif LTEMPERATURE
|
|
out_uu = rk3(out_uu, uu, momentum(globalVertexIdx, uu, lnrho, tt, dt), dt);
|
|
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
|
|
#else
|
|
out_uu = rk3(out_uu, uu, momentum(globalVertexIdx, uu, lnrho, dt), dt);
|
|
#endif
|
|
|
|
#if LFORCING
|
|
if (step_number == 2) {
|
|
out_uu = out_uu + forcing(globalVertexIdx, dt);
|
|
}
|
|
#endif
|
|
|
|
#if LSINK
|
|
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), dt);// unit now is rho!
|
|
|
|
if (step_number == 2) {
|
|
out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz;// unit is now mass!
|
|
}
|
|
#endif
|
|
}
|