Files
cem17/figures/plots.py
Carl Pearson 4f211edf37 figures
2017-05-04 18:01:15 -05:00

80 lines
3.1 KiB
Python

import matplotlib.pyplot as plt
plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
plt.rcdefaults()
fig, ax = plt.subplots()
systems = ('BW (32T)', "Minsky (160T)")
mlfmm = (8.65e4, 4.71e4)
total = (1.2e5, 5.6e4)
x_pos = np.arange(len(systems))
ax.bar(x_pos, mlfmm, color='gray')
ax.bar(x_pos, [i-j for i,j in zip(total, mlfmm)], color='lightgray', bottom=mlfmm )
ax.set_xticks(x_pos)
ax.set_xticklabels(systems)
ax.set_ylabel("Execution Time (ms)")
# ax.set_title('How fast do you want to go today?')
plt.savefig('figures/cpu_matvec.pdf')
print 'figures/cpu_matvec.pdf'
fig, ax = plt.subplots()
systems = ('1T', "32T", "1 GPU" ,"4 GPU", "16 GPU")
mlfmm = (1.50e6, 8.64e4, 2.78e4, 7.01e3, 1.89e3)
num = (45,45,45,45,47)
x_pos = np.arange(len(systems))
ax.bar(x_pos, [i/j for i,j in zip(mlfmm,num)], color='gray', log=True)
ax.set_xticks(x_pos)
ax.set_xticklabels(systems)
ax.set_ylabel("Per-MLFMM Execution Time (ms)")
plt.ylim([1, 1e5])
# ax.set_title('How fast do you want to go today?')
plt.savefig('figures/mlfmm_bw.pdf')
print 'figures/mlfmm_bw.pdf'
fig, ax = plt.subplots()
systems = ('1T', "160T", "1 GPU" ,"4 GPU")
mlfmm = (1.25e6, 4.71e4, 5.22e3, 1.29e3)
num = (44,44,44,44)
x_pos = np.arange(len(systems))
ax.bar(x_pos, [i/j for i,j in zip(mlfmm,num)], color='gray', log=True)
ax.set_xticks(x_pos)
ax.set_xticklabels(systems)
ax.set_ylabel("Per-MLFMM Execution Time (ms)")
plt.ylim([1, 1e5])
# ax.set_title('How fast do you want to go today?')
plt.savefig('figures/mlfmm_minsky.pdf')
print 'figures/mlfmm_minsky.pdf'
fig, ax = plt.subplots()
systems = ['BW 32T', "Minsky 160T", "BW 4 GPU" ,"Minsky 4 GPU"]
p2m = (127.10, 72.10749, 7.73, 1.604)
m2m = (156.2506, 102.61091, 9.613814, 1.746476)
m2l = (189.615, 82.67791, 18.177774, 2.671025)
l2l = (91.5957, 101.56461, 20.215436, 2.611185)
l2p = (196.2115, 68.38529, 6.994, 1.395)
p2p = (1117.368, 590.4818, 90.619, 18.265)
total = [sum(i) for i in zip(p2m,m2m,m2l,l2l,l2p,p2p)]
p2m_ratio = [i/j for i,j in zip(p2m, total)]
m2m_ratio = [i/j for i,j in zip(m2m, total)]
m2l_ratio = [i/j for i,j in zip(m2l, total)]
l2l_ratio = [i/j for i,j in zip(l2l, total)]
l2p_ratio = [i/j for i,j in zip(l2p, total)]
p2p_ratio = [i/j for i,j in zip(p2p, total)]
x_pos = np.arange(len(systems))
ax.bar(x_pos, p2p_ratio, color='0', label='p2p')
ax.bar(x_pos, l2p_ratio, color='0.15', label='l2p', bottom=p2p_ratio)
ax.bar(x_pos, l2l_ratio, color='0.3', label='l2l', bottom=[sum(i) for i in zip(l2p_ratio,p2p_ratio)])
ax.bar(x_pos, m2l_ratio, color='0.45', label='m2l', bottom=[sum(i) for i in zip(l2l_ratio, l2p_ratio,p2p_ratio)])
ax.bar(x_pos, m2m_ratio, color='0.6', label='m2m', bottom=[sum(i) for i in zip(m2l_ratio, l2l_ratio, l2p_ratio,p2p_ratio)])
ax.bar(x_pos, p2m_ratio, color='0.75', label='p2m', bottom=[sum(i) for i in zip(m2m_ratio, m2l_ratio, l2l_ratio, l2p_ratio,p2p_ratio)])
ax.set_xticks(x_pos)
ax.set_xticklabels(systems)
ax.set_ylabel("MLFMM Kernel Breakdown")
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)
# plt.ylim([1, 1e4])
# ax.set_title('How fast do you want to go today?')
plt.savefig('figures/kernels.pdf')
print 'figures/kernels.pdf'