Files
suitesparse-downloader/datasets.py
2021-11-29 07:34:15 -08:00

141 lines
2.9 KiB
Python

import collections
import sys
import ssgetpy
import lists
Dataset = collections.namedtuple("Dataset", ["name", "mats"])
def safe_dir_name(s):
t = s.strip()
t = t.replace(" ", "_")
t = t.replace("/", "_")
t = t.replace("-", "_")
t = t.lower()
return t
def filter_reject_blacklist(mats):
filtered = []
for mat in mats:
if mat.name in lists.INTEGER_MATS:
print(f"BLACKLIST {mat.name}")
continue
filtered += [mat]
return filtered
def filter_reject_large(mats):
filtered = []
for mat in mats:
if mat.rows > 1_000_000 or mat.cols > 1_000_000 or mat.nnz > 20_000_000:
continue
filtered += [mat]
return filtered
def filter_reject_small(mats):
filtered = []
for mat in mats:
if mat.rows < 1_000 or mat.cols < 1_000 or mat.nnz < 20_000:
continue
filtered += [mat]
return filtered
## all real-valued matrices
REAL_MATS = Dataset(
name = "reals",
mats = filter_reject_blacklist(ssgetpy.search(
dtype='real',
limit=1_000_000
))
)
## certain matrices with regular structure
kinds = [
"2D/3D",
"Acoustics Problem",
"Materials Problem",
"Structural Problem",
"Computational Fluid Dynamics Problem",
"Model Reduction Problem",
"Semiconductor Device Problem",
"Theoretical/Quantum Chemistry Problem",
"Thermal Problem",
]
REGULAR_REAL_MATS = Dataset(
name = "regular_reals",
mats = []
)
mats = []
for kind in kinds:
mats += ssgetpy.search(
kind=kind,
dtype='real',
limit=1_000_000
)
REGULAR_REAL_MATS = Dataset(
name="regular_reals",
mats = filter_reject_blacklist(mats)
)
## keep "small" matrices
REGULAR_REAL_SMALL_MATS = Dataset (
name = "regular_reals_small",
mats = filter_reject_large(REGULAR_REAL_MATS.mats)
)
REAL_SMALL_MATS = Dataset (
name = "reals_small",
mats = filter_reject_large(REAL_MATS.mats)
)
## keep "medium" matrices
REGULAR_REAL_MED_MATS = Dataset (
name = "regular_reals_med",
mats = filter_reject_large(filter_reject_small(REGULAR_REAL_MATS.mats))
)
REAL_MED_MATS = Dataset (
name = "reals_med",
mats = filter_reject_large(filter_reject_small(REAL_MATS.mats))
)
## export all datasets
DATASETS = [
REAL_MATS,
REAL_SMALL_MATS,
REAL_MED_MATS,
REGULAR_REAL_MATS,
REGULAR_REAL_SMALL_MATS,
REGULAR_REAL_MED_MATS
]
def get_kinds():
"""return set of unique kind fields"""
mats = ssgetpy.search(
limit=1_000_000
)
kinds = set()
for mat in mats:
kinds.add(mat.kind)
print(f"kinds: {kinds}")
return kinds
for kind in get_kinds():
d = Dataset(
name = "kind_"+safe_dir_name(kind),
mats = filter_reject_blacklist(ssgetpy.search(
kind=kind,
dtype='real',
limit=1_000_000
))
)
if len(d.mats) > 0:
DATASETS += [d]