Pulled useful changes from the benchmark branch. GPUDirect RDMA (unpinned) is now the default for MPI communication.

This commit is contained in:
jpekkila
2020-07-29 16:39:24 +03:00
parent 6cab3586cf
commit 003c202e8c
4 changed files with 238 additions and 22 deletions

View File

@@ -43,7 +43,7 @@ static FILE* FHEADER = NULL;
static const char* dslheader_filename = "user_defines.h";
static const char* cudaheader_filename = "user_kernels.h";
static const char* fheader_filename = "astaroth_fortran.h";
static const char* fheader_filename = "astaroth.f90";
// Forward declaration of yyparse
int yyparse(void);

View File

@@ -207,24 +207,18 @@ main(int argc, char** argv)
results[nth_percentile * num_iters], 100 * nth_percentile);
char path[4096] = "";
if (test == TEST_STRONG_SCALING)
strncpy(path, "strong_scaling.csv", sizeof(path));
else if (test == TEST_WEAK_SCALING)
strncpy(path, "weak_scaling.csv", sizeof(path));
else
ERROR("Invalid test type");
sprintf(path, "%s_%d.csv", test == TEST_STRONG_SCALING ? "strong" : "weak", nprocs);
FILE* fp = fopen(path, "a");
ERRCHK_ALWAYS(fp);
// Format
// nprocs, measured (ms)
fprintf(fp, "%d, %g\n", nprocs, results[nth_percentile * num_iters]);
// nprocs, min, 50th perc, 90th perc, max
fprintf(fp, "%d, %g, %g, %g, %g\n", nprocs, results[0], results[0.5 * num_iters], results[nth_percentile * num_iters], results[num_iters-1]);
fclose(fp);
}
/*
const size_t num_iters = 100;
const size_t num_iters = 1000;
const double nth_percentile = 0.90;
std::vector<double> results; // ms

View File

@@ -21,6 +21,7 @@ main(void)
fprintf(fp, "#SBATCH --time=00:14:59\n");
fprintf(fp, "#SBATCH --mem=32000\n");
fprintf(fp, "#SBATCH --partition=gpu\n");
fprintf(fp, "#SBATCH --cpus-per-task=10\n");
// nprocs, nodes, gpus
const int max_gpus_per_node = 4;
@@ -29,22 +30,30 @@ main(void)
fprintf(fp, "#SBATCH --gres=gpu:v100:%d\n", gpus_per_node);
fprintf(fp, "#SBATCH -n %d\n", nprocs);
fprintf(fp, "#SBATCH -N %d\n", nodes);
fprintf(fp, "#SBATCH --exclusive\n");
//fprintf(fp, "#SBATCH --exclusive\n");
if (nprocs > 4)
fprintf(fp, "#SBATCH --ntasks-per-socket=2\n");
// Modules
fprintf(fp, "module load gcc/8.3.0 cuda/10.1.168 cmake hpcx-mpi/2.5.0-cuda nccl\n");
// OpenMPI
fprintf(fp, "module load gcc/8.3.0 cuda/10.1.168 cmake openmpi nccl\n");
// HPCX
//fprintf(fp, "module load gcc/8.3.0 cuda/10.1.168 cmake hpcx-mpi/2.5.0-cuda nccl\n");
fprintf(fp, "export UCX_MEMTYPE_CACHE=n\n");
// Profile and run
fprintf(fp, "mkdir -p profile_%d\n", nprocs);
//fprintf(fp, "mkdir -p profile_%d\n", nprocs);
const int nx = 256; // max size 1792;
const int ny = nx;
const int nz = nx;
/*
fprintf(fp,
//"srun nvprof --annotate-mpi openmpi -o profile_%d/%%p.nvprof ./benchmark %d %d "
//"%d\n",
"srun ./benchmark %d %d %d\n", nx, ny, nz);
*/
fprintf(fp, "srun ./benchmark %d %d %d\n", nx, ny, nz);
fclose(fp);
}

View File

@@ -16,7 +16,7 @@
#define MPI_COMPUTE_ENABLED (1)
#define MPI_COMM_ENABLED (1)
#define MPI_INCL_CORNERS (0)
#define MPI_USE_PINNED (1) // Do inter-node comm with pinned memory
#define MPI_USE_PINNED (0) // Do inter-node comm with pinned memory
#define MPI_USE_CUDA_DRIVER_PINNING (0) // Pin with cuPointerSetAttribute, otherwise cudaMallocHost
#include <cuda.h> // CUDA driver API (needed if MPI_USE_CUDA_DRIVER_PINNING is set)
@@ -115,7 +115,7 @@ AcResult
acDeviceCreate(const int id, const AcMeshInfo device_config, Device* device_handle)
{
cudaSetDevice(id);
// cudaDeviceReset(); // Would be good for safety, but messes stuff up if we want to emulate
cudaDeviceReset(); // Would be good for safety, but messes stuff up if we want to emulate
// multiple devices with a single GPU
// Create Device
@@ -1169,10 +1169,8 @@ acTransferCommData(const Device device, //
static void
acTransferCommDataWait(const CommData data)
{
for (size_t i = 0; i < data.count; ++i) {
MPI_Wait(&data.send_reqs[i], MPI_STATUS_IGNORE);
MPI_Wait(&data.recv_reqs[i], MPI_STATUS_IGNORE);
}
MPI_Waitall(data.count, data.recv_reqs, MPI_STATUSES_IGNORE);
MPI_Waitall(data.count, data.send_reqs, MPI_STATUSES_IGNORE);
}
typedef struct {
@@ -1337,8 +1335,10 @@ acGridStoreMesh(const Stream stream, AcMesh* host_mesh)
return AC_SUCCESS;
}
/*
// Unused
AcResult
acGridIntegrate(const Stream stream, const AcReal dt)
acGridIntegratePipelined(const Stream stream, const AcReal dt)
{
ERRCHK(grid.initialized);
acGridSynchronizeStream(stream);
@@ -1549,6 +1549,220 @@ acGridIntegrate(const Stream stream, const AcReal dt)
acDeviceSynchronizeStream(device, STREAM_ALL); // Wait until inner and outer done
return AC_SUCCESS;
}
*/
AcResult
acGridIntegrate(const Stream stream, const AcReal dt)
{
ERRCHK(grid.initialized);
acGridSynchronizeStream(stream);
const Device device = grid.device;
const int3 nn = grid.nn;
#if MPI_INCL_CORNERS
CommData corner_data = grid.corner_data; // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
CommData edgex_data = grid.edgex_data;
CommData edgey_data = grid.edgey_data;
CommData edgez_data = grid.edgez_data;
CommData sidexy_data = grid.sidexy_data;
CommData sidexz_data = grid.sidexz_data;
CommData sideyz_data = grid.sideyz_data;
acDeviceSynchronizeStream(device, stream);
// Corners
#if MPI_INCL_CORNERS
// Do not rm: required for corners
const int3 corner_b0s[] = {
(int3){0, 0, 0},
(int3){NGHOST + nn.x, 0, 0},
(int3){0, NGHOST + nn.y, 0},
(int3){0, 0, NGHOST + nn.z},
(int3){NGHOST + nn.x, NGHOST + nn.y, 0},
(int3){NGHOST + nn.x, 0, NGHOST + nn.z},
(int3){0, NGHOST + nn.y, NGHOST + nn.z},
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST + nn.z},
};
#endif // MPI_INCL_CORNERS
// Edges X
const int3 edgex_b0s[] = {
(int3){NGHOST, 0, 0},
(int3){NGHOST, NGHOST + nn.y, 0},
(int3){NGHOST, 0, NGHOST + nn.z},
(int3){NGHOST, NGHOST + nn.y, NGHOST + nn.z},
};
// Edges Y
const int3 edgey_b0s[] = {
(int3){0, NGHOST, 0},
(int3){NGHOST + nn.x, NGHOST, 0},
(int3){0, NGHOST, NGHOST + nn.z},
(int3){NGHOST + nn.x, NGHOST, NGHOST + nn.z},
};
// Edges Z
const int3 edgez_b0s[] = {
(int3){0, 0, NGHOST},
(int3){NGHOST + nn.x, 0, NGHOST},
(int3){0, NGHOST + nn.y, NGHOST},
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST},
};
// Sides XY
const int3 sidexy_b0s[] = {
(int3){NGHOST, NGHOST, 0}, //
(int3){NGHOST, NGHOST, NGHOST + nn.z}, //
};
// Sides XZ
const int3 sidexz_b0s[] = {
(int3){NGHOST, 0, NGHOST}, //
(int3){NGHOST, NGHOST + nn.y, NGHOST}, //
};
// Sides YZ
const int3 sideyz_b0s[] = {
(int3){0, NGHOST, NGHOST}, //
(int3){NGHOST + nn.x, NGHOST, NGHOST}, //
};
for (int isubstep = 0; isubstep < 3; ++isubstep) {
#if MPI_COMM_ENABLED
#if MPI_INCL_CORNERS
acPackCommData(device, corner_b0s, &corner_data); // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
acPackCommData(device, edgex_b0s, &edgex_data);
acPackCommData(device, edgey_b0s, &edgey_data);
acPackCommData(device, edgez_b0s, &edgez_data);
acPackCommData(device, sidexy_b0s, &sidexy_data);
acPackCommData(device, sidexz_b0s, &sidexz_data);
acPackCommData(device, sideyz_b0s, &sideyz_data);
#endif
#if MPI_COMM_ENABLED
MPI_Barrier(MPI_COMM_WORLD);
#if MPI_GPUDIRECT_DISABLED
#if MPI_INCL_CORNERS
acTransferCommDataToHost(device, &corner_data); // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
acTransferCommDataToHost(device, &edgex_data);
acTransferCommDataToHost(device, &edgey_data);
acTransferCommDataToHost(device, &edgez_data);
acTransferCommDataToHost(device, &sidexy_data);
acTransferCommDataToHost(device, &sidexz_data);
acTransferCommDataToHost(device, &sideyz_data);
#endif
#if MPI_INCL_CORNERS
acTransferCommData(device, corner_b0s, &corner_data); // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
acTransferCommData(device, edgex_b0s, &edgex_data);
acTransferCommData(device, edgey_b0s, &edgey_data);
acTransferCommData(device, edgez_b0s, &edgez_data);
acTransferCommData(device, sidexy_b0s, &sidexy_data);
acTransferCommData(device, sidexz_b0s, &sidexz_data);
acTransferCommData(device, sideyz_b0s, &sideyz_data);
#endif // MPI_COMM_ENABLED
#if MPI_COMPUTE_ENABLED
//////////// INNER INTEGRATION //////////////
{
const int3 m1 = (int3){2 * NGHOST, 2 * NGHOST, 2 * NGHOST};
const int3 m2 = nn;
acDeviceIntegrateSubstep(device, STREAM_16, isubstep, m1, m2, dt);
}
////////////////////////////////////////////
#endif // MPI_COMPUTE_ENABLED
#if MPI_COMM_ENABLED
#if MPI_INCL_CORNERS
acTransferCommDataWait(corner_data); // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
acTransferCommDataWait(edgex_data);
acTransferCommDataWait(edgey_data);
acTransferCommDataWait(edgez_data);
acTransferCommDataWait(sidexy_data);
acTransferCommDataWait(sidexz_data);
acTransferCommDataWait(sideyz_data);
#if MPI_INCL_CORNERS
acUnpinCommData(device, &corner_data); // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
acUnpinCommData(device, &edgex_data);
acUnpinCommData(device, &edgey_data);
acUnpinCommData(device, &edgez_data);
acUnpinCommData(device, &sidexy_data);
acUnpinCommData(device, &sidexz_data);
acUnpinCommData(device, &sideyz_data);
#if MPI_INCL_CORNERS
acUnpackCommData(device, corner_b0s, &corner_data);
#endif // MPI_INCL_CORNERS
acUnpackCommData(device, edgex_b0s, &edgex_data);
acUnpackCommData(device, edgey_b0s, &edgey_data);
acUnpackCommData(device, edgez_b0s, &edgez_data);
acUnpackCommData(device, sidexy_b0s, &sidexy_data);
acUnpackCommData(device, sidexz_b0s, &sidexz_data);
acUnpackCommData(device, sideyz_b0s, &sideyz_data);
//////////// OUTER INTEGRATION //////////////
// Wait for unpacking
#if MPI_INCL_CORNERS
acSyncCommData(corner_data); // Do not rm: required for corners
#endif // MPI_INCL_CORNERS
acSyncCommData(edgex_data);
acSyncCommData(edgey_data);
acSyncCommData(edgez_data);
acSyncCommData(sidexy_data);
acSyncCommData(sidexz_data);
acSyncCommData(sideyz_data);
#endif // MPI_COMM_ENABLED
#if MPI_COMPUTE_ENABLED
{ // Front
const int3 m1 = (int3){NGHOST, NGHOST, NGHOST};
const int3 m2 = m1 + (int3){nn.x, nn.y, NGHOST};
acDeviceIntegrateSubstep(device, STREAM_0, isubstep, m1, m2, dt);
}
{ // Back
const int3 m1 = (int3){NGHOST, NGHOST, nn.z};
const int3 m2 = m1 + (int3){nn.x, nn.y, NGHOST};
acDeviceIntegrateSubstep(device, STREAM_1, isubstep, m1, m2, dt);
}
{ // Bottom
const int3 m1 = (int3){NGHOST, NGHOST, 2 * NGHOST};
const int3 m2 = m1 + (int3){nn.x, NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_2, isubstep, m1, m2, dt);
}
{ // Top
const int3 m1 = (int3){NGHOST, nn.y, 2 * NGHOST};
const int3 m2 = m1 + (int3){nn.x, NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_3, isubstep, m1, m2, dt);
}
{ // Left
const int3 m1 = (int3){NGHOST, 2 * NGHOST, 2 * NGHOST};
const int3 m2 = m1 + (int3){NGHOST, nn.y - 2 * NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_4, isubstep, m1, m2, dt);
}
{ // Right
const int3 m1 = (int3){nn.x, 2 * NGHOST, 2 * NGHOST};
const int3 m2 = m1 + (int3){NGHOST, nn.y - 2 * NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_5, isubstep, m1, m2, dt);
}
#endif // MPI_COMPUTE_ENABLED
acDeviceSwapBuffers(device);
acDeviceSynchronizeStream(device, STREAM_ALL); // Wait until inner and outer done
////////////////////////////////////////////
}
return AC_SUCCESS;
}
AcResult
acGridPeriodicBoundconds(const Stream stream)
@@ -1774,5 +1988,4 @@ acGridReduceVec(const Stream stream, const ReductionType rtype, const VertexBuff
return acMPIReduceScal(local_result, rtype, result);
}
#endif // AC_MPI_ENABLED