Desperately trying to port the new changes of DSL.

Still work to do.
This commit is contained in:
Miikka Vaisala
2019-09-02 14:04:27 +08:00
parent 6eeb225924
commit 02ac6c956f
2 changed files with 55 additions and 50 deletions

View File

@@ -89,7 +89,7 @@ uniform Scalar AC_ff_hel_imx;
uniform Scalar AC_ff_hel_imy;
uniform Scalar AC_ff_hel_imz;
// Additional helper params // (deduced from other params do not set these directly!)
uniform Scalar AC_G_CONST;
uniform Scalar AC_G_const;
uniform Scalar AC_GM_star;
uniform Scalar AC_unit_mass;
uniform Scalar AC_sq2GM_star;
@@ -128,3 +128,8 @@ uniform ScalarField VTXBUF_UUZ;
#else
uniform ScalarField VTXBUF_LNRHO;
#endif
#if LSINK
uniform ScalarField VTXBUF_ACCRETION;
#endif

View File

@@ -26,18 +26,18 @@ gradients(in VectorField uu)
#if LSINK
Vector
sink_gravity(int3 globalVertexIdx){
int accretion_switch = DCONST_INT(AC_switch_accretion);
int accretion_switch = AC_switch_accretion;
if (accretion_switch == 1){
Vector force_gravity;
const Vector grid_pos = (Vector){(globalVertexIdx.x - nx_min) * dsx,
(globalVertexIdx.y - ny_min) * dsy,
(globalVertexIdx.z - nz_min) * dsz};
const Scalar sink_mass = DCONST_REAL(AC_M_sink);
const Vector sink_pos = (Vector){DCONST_REAL(AC_sink_pos_x),
DCONST_REAL(AC_sink_pos_y),
DCONST_REAL(AC_sink_pos_z)};
const Vector grid_pos = (Vector){(globalVertexIdx.x - AC_nx_min) * AC_dsx,
(globalVertexIdx.y - AC_ny_min) * AC_dsy,
(globalVertexIdx.z - AC_nz_min) * AC_dsz};
const Scalar sink_mass = AC_M_sink;
const Vector sink_pos = (Vector){AC_sink_pos_x,
AC_sink_pos_y,
AC_sink_pos_z};
const Scalar distance = length(grid_pos - sink_pos);
const Scalar soft = DCONST_REAL(AC_soft);
const Scalar soft = AC_soft;
const Scalar gravity_magnitude = (AC_G_const * sink_mass) / pow(((distance * distance) + soft*soft), 1.5);
const Vector direction = (Vector){(sink_pos.x - grid_pos.x) / distance,
(sink_pos.y - grid_pos.y) / distance,
@@ -56,9 +56,9 @@ sink_gravity(int3 globalVertexIdx){
Scalar
truelove_density(in ScalarField lnrho){
const Scalar rho = exp(value(lnrho));
const Scalar Jeans_length_squared = (M_PI * cs2_sound) / (AC_G_const * rho);
const Scalar TJ_rho = ((M_PI) * ((dsx * dsx) / Jeans_length_squared) * cs2_sound) / (AC_G_const * dsx * dsx);
//TODO: dsx will cancel out, deal with it later for optimization.
const Scalar Jeans_length_squared = (M_PI * AC_cs2_sound) / (AC_G_const * rho);
const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) / (AC_G_const * AC_dsx * AC_dsx);
//TODO: AC_dsx will cancel out, deal with it later for optimization.
Scalar accretion_rho = TJ_rho;
@@ -67,15 +67,15 @@ truelove_density(in ScalarField lnrho){
Scalar
sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
const Vector grid_pos = (Vector){(globalVertexIdx.x - nx_min) * dsx,
(globalVertexIdx.y - ny_min) * dsy,
(globalVertexIdx.z - nz_min) * dsz};
const Vector sink_pos = (Vector){DCONST_REAL(AC_sink_pos_x),
DCONST_REAL(AC_sink_pos_y),
DCONST_REAL(AC_sink_pos_z)};
const Scalar profile_range = DCONST_REAL(AC_accretion_range);
const Vector grid_pos = (Vector){(globalVertexIdx.x - AC_nx_min) * AC_dsx,
(globalVertexIdx.y - AC_ny_min) * AC_dsy,
(globalVertexIdx.z - AC_nz_min) * AC_dsz};
const Vector sink_pos = (Vector){AC_sink_pos_x,
AC_sink_pos_y,
AC_sink_pos_z};
const Scalar profile_range = AC_accretion_range;
const Scalar accretion_distance = length(grid_pos - sink_pos);
int accretion_switch = DCONST_INT(AC_switch_accretion);
int accretion_switch = AC_switch_accretion;
Scalar accretion_density;
Scalar weight;
@@ -90,10 +90,10 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
// const Scalar lnrho_min = Scalar(-10.0); //TODO Define from astaroth.conf
const Scalar lnrho_min = log(truelove_density(lnrho));
// const Scalar sink_mass = DCONST_REAL(AC_M_sink);
// const Scalar sink_mass = AC_M_sink;
// const Scalar B = Scalar(0.5);
// const Scalar k = Scalar(1.5);
// const Scalar rate = B * (pow(sink_mass, k) / (dsx * dsy * dsz));
// const Scalar rate = B * (pow(sink_mass, k) / (AC_dsx * AC_dsy * AC_dsz));
Scalar rate;
if (value(lnrho) > lnrho_min) {
rate = (exp(value(lnrho)) - exp(lnrho_min)) / dt;
@@ -110,15 +110,15 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
Vector
sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
const Vector grid_pos = (Vector){(globalVertexIdx.x - nx_min) * dsx,
(globalVertexIdx.y - ny_min) * dsy,
(globalVertexIdx.z - nz_min) * dsz};
const Vector sink_pos = (Vector){DCONST_REAL(AC_sink_pos_x),
DCONST_REAL(AC_sink_pos_y),
DCONST_REAL(AC_sink_pos_z)};
const Scalar profile_range = DCONST_REAL(AC_accretion_range);
const Vector grid_pos = (Vector){(globalVertexIdx.x - AC_nx_min) * AC_dsx,
(globalVertexIdx.y - AC_ny_min) * AC_dsy,
(globalVertexIdx.z - AC_nz_min) * AC_dsz};
const Vector sink_pos = (Vector){AC_sink_pos_x,
AC_sink_pos_y,
AC_sink_pos_z};
const Scalar profile_range = AC_accretion_range;
const Scalar accretion_distance = length(grid_pos - sink_pos);
int accretion_switch = DCONST_INT(AC_switch_accretion);
int accretion_switch = AC_switch_accretion;
Vector accretion_velocity;
if (accretion_switch == 1){
@@ -187,7 +187,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
//Gravity term
+ sink_gravity(globalVertexIdx)
//Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (dsx*dsy*dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
;
#else
@@ -238,7 +238,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar d
#if LSINK
+ sink_gravity(globalVertexIdx)
//Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (dsx*dsy*dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
;
#else
@@ -335,7 +335,7 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
#if LFORCING
Vector
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude){
int accretion_switch = DCONST_INT(AC_switch_accretion);
int accretion_switch = AC_switch_accretion;
if (accretion_switch == 0){
return magnitude * cross(normalized(b - a), (Vector){ 0, 0, 1}); // Vortex
@@ -345,7 +345,7 @@ Vector
}
Vector
simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude){
int accretion_switch = DCONST_INT(AC_switch_accretion);
int accretion_switch = AC_switch_accretion;
if (accretion_switch == 0){
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
} else {
@@ -392,24 +392,24 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
Vector
forcing(int3 globalVertexIdx, Scalar dt)
{
int accretion_switch = DCONST_INT(AC_switch_accretion);
int accretion_switch = AC_switch_accretion;
if (accretion_switch == 0){
Vector a = Scalar(.5) * (Vector){globalGridN.x * dsx,
globalGridN.y * dsy,
globalGridN.z * dsz}; // source (origin)
Vector xx = (Vector){(globalVertexIdx.x - nx_min) * dsx,
(globalVertexIdx.y - ny_min) * dsy,
(globalVertexIdx.z - nz_min) * dsz}; // sink (current index)
const Scalar cs2 = cs2_sound;
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx,
globalGridN.y * AC_dsy,
globalGridN.z * AC_dsz}; // source (origin)
Vector xx = (Vector){(globalVertexIdx.x - AC_nx_min) * AC_dsx,
(globalVertexIdx.y - AC_ny_min) * AC_dsy,
(globalVertexIdx.z - AC_nz_min) * AC_dsz}; // sink (current index)
const Scalar cs2 = AC_cs2_sound;
const Scalar cs = sqrt(cs2);
//Placeholders until determined properly
Scalar magnitude = DCONST_REAL(AC_forcing_magnitude);
Scalar phase = DCONST_REAL(AC_forcing_phase);
Vector k_force = (Vector){ DCONST_REAL(AC_k_forcex), DCONST_REAL(AC_k_forcey), DCONST_REAL(AC_k_forcez)};
Vector ff_re = (Vector){DCONST_REAL(AC_ff_hel_rex), DCONST_REAL(AC_ff_hel_rey), DCONST_REAL(AC_ff_hel_rez)};
Vector ff_im = (Vector){DCONST_REAL(AC_ff_hel_imx), DCONST_REAL(AC_ff_hel_imy), DCONST_REAL(AC_ff_hel_imz)};
Scalar magnitude = AC_forcing_magnitude;
Scalar phase = AC_forcing_phase;
Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez};
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
//Determine that forcing funtion type at this point.
@@ -418,7 +418,7 @@ forcing(int3 globalVertexIdx, Scalar dt)
Vector force = helical_forcing(magnitude, k_force, xx, ff_re,ff_im, phase);
//Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
const Scalar NN = cs*sqrt(DCONST_REAL(AC_kaver)*cs);
const Scalar NN = cs*sqrt(AC_kaver*cs);
//MV: Like in the Pencil Code. I don't understandf the logic here.
force.x = sqrt(dt)*NN*force.x;
force.y = sqrt(dt)*NN*force.y;
@@ -490,7 +490,7 @@ solve()
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), dt);// unit now is rho!
if (step_number == 2) {
out_accretion = out_accretion * dsx * dsy * dsz;// unit is now mass!
out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz;// unit is now mass!
}
#endif
}