Autoformatted the DSL files

This commit is contained in:
jpekkila
2019-08-20 18:41:26 +03:00
parent 73d393e419
commit 5d2b658fb0
2 changed files with 178 additions and 174 deletions

View File

@@ -9,9 +9,7 @@ value(in ScalarField vertex)
Preprocessed Vector
gradient(in ScalarField vertex)
{
return (Vector){derx(vertexIdx, vertex),
dery(vertexIdx, vertex),
derz(vertexIdx, vertex)};
return (Vector){derx(vertexIdx, vertex), dery(vertexIdx, vertex), derz(vertexIdx, vertex)};
}
#if LUPWD
@@ -21,14 +19,14 @@ der6x_upwd(in ScalarField vertex)
{
Scalar inv_ds = AC_inv_dsx;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
- Scalar(20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+ Scalar(15.0)*(vertex[vertexIdx.x+1, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-1, vertexIdx.y, vertexIdx.z])
- Scalar( 6.0)*(vertex[vertexIdx.x+2, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-2, vertexIdx.y, vertexIdx.z])
+ vertex[vertexIdx.x+3, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-3, vertexIdx.y, vertexIdx.z])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x + 1, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 1, vertexIdx.y, vertexIdx.z]) -
Scalar(6.0) * (vertex[vertexIdx.x + 2, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 2, vertexIdx.y, vertexIdx.z]) +
vertex[vertexIdx.x + 3, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 3, vertexIdx.y, vertexIdx.z])};
}
Preprocessed Scalar
@@ -36,14 +34,14 @@ der6y_upwd(in ScalarField vertex)
{
Scalar inv_ds = AC_inv_dsy;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
-Scalar( 20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+Scalar( 15.0)*(vertex[vertexIdx.x, vertexIdx.y+1, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-1, vertexIdx.z])
-Scalar( 6.0)*(vertex[vertexIdx.x, vertexIdx.y+2, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-2, vertexIdx.z])
+ vertex[vertexIdx.x, vertexIdx.y+3, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-3, vertexIdx.z])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y + 1, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 1, vertexIdx.z]) -
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y + 2, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 2, vertexIdx.z]) +
vertex[vertexIdx.x, vertexIdx.y + 3, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 3, vertexIdx.z])};
}
Preprocessed Scalar
@@ -51,14 +49,14 @@ der6z_upwd(in ScalarField vertex)
{
Scalar inv_ds = AC_inv_dsz;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
-Scalar( 20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+Scalar( 15.0)*(vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+1]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-1])
-Scalar( 6.0)*(vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+2]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-2])
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+3]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-3])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 1] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 1]) -
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 2] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 2]) +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 3] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 3])};
}
#endif
@@ -68,9 +66,10 @@ hessian(in ScalarField vertex)
{
Matrix hessian;
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex), derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex),
derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
return hessian;
}

View File

@@ -1,6 +1,5 @@
#include "stencil_definition.sdh"
Vector
value(in VectorField uu)
{
@@ -14,7 +13,7 @@ upwd_der6(in VectorField uu, in ScalarField lnrho)
Scalar uux = fabs(value(uu).x);
Scalar uuy = fabs(value(uu).y);
Scalar uuz = fabs(value(uu).z);
return (Scalar){uux*der6x_upwd(lnrho) + uuy*der6y_upwd(lnrho) + uuz*der6z_upwd(lnrho)};
return (Scalar){uux * der6x_upwd(lnrho) + uuy * der6y_upwd(lnrho) + uuz * der6z_upwd(lnrho)};
}
#endif
@@ -25,10 +24,11 @@ gradients(in VectorField uu)
}
Scalar
continuity(in VectorField uu, in ScalarField lnrho) {
continuity(in VectorField uu, in ScalarField lnrho)
{
return -dot(value(uu), gradient(lnrho))
#if LUPWD
//This is a corrective hyperdiffusion term for upwinding.
// This is a corrective hyperdiffusion term for upwinding.
+ upwd_der6(uu, lnrho)
#endif
- divergence(uu);
@@ -36,133 +36,136 @@ continuity(in VectorField uu, in ScalarField lnrho) {
#if LENTROPY
Vector
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa) {
const Matrix S = stress_tensor(uu);
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound + (AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
const Vector j = (Scalar(1.) / AC_mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa)
{
const Matrix S = stress_tensor(uu);
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
const Vector j = (Scalar(1.) / AC_mu0) *
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Vector B = curl(aa);
//TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
// TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
// \1
const Vector mom = - mul(gradients(uu), value(uu))
- cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho))
+ inv_rho * cross(j, B)
+ AC_nu_visc * (
laplace_vec(uu)
+ Scalar(1. / 3.) * gradient_of_divergence(uu)
+ Scalar(2.) * mul(S, gradient(lnrho))
)
+ AC_zeta * gradient_of_divergence(uu);
const Vector mom = -mul(gradients(uu), value(uu)) -
cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
inv_rho * cross(j, B) +
AC_nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu);
return mom;
}
#elif LTEMPERATURE
Vector
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField tt) {
Vector mom;
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{
Vector mom;
const Matrix S = stress_tensor(uu);
const Matrix S = stress_tensor(uu);
const Vector pressure_term = (AC_cp_sound - AC_cv_sound) * (gradient(tt) + value(tt) * gradient(lnrho));
const Vector pressure_term = (AC_cp_sound - AC_cv_sound) *
(gradient(tt) + value(tt) * gradient(lnrho));
mom = -mul(gradients(uu), value(uu)) -
pressure_term +
AC_nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu);
mom = -mul(gradients(uu), value(uu)) - pressure_term +
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu);
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
return mom;
return mom;
}
#else
Vector
momentum(in VectorField uu, in ScalarField lnrho) {
Vector mom;
momentum(in VectorField uu, in ScalarField lnrho)
{
Vector mom;
const Matrix S = stress_tensor(uu);
const Matrix S = stress_tensor(uu);
// Isothermal: we have constant speed of sound
mom = -mul(gradients(uu), value(uu)) -
AC_cs2_sound * gradient(lnrho) +
AC_nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + AC_zeta * gradient_of_divergence(uu);
mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) +
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu);
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
return mom;
return mom;
}
#endif
Vector
induction(in VectorField uu, in VectorField aa) {
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
induction(in VectorField uu, in VectorField aa)
{
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
// Note, AC_mu0 is cancelled out
const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap);
// Note, AC_mu0 is cancelled out
const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap);
return ind;
return ind;
}
#if LENTROPY
Scalar
lnT( in ScalarField ss, in ScalarField lnrho) {
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
return lnT;
lnT(in ScalarField ss, in ScalarField lnrho)
{
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
return lnT;
}
// Nabla dot (K nabla T) / (rho T)
Scalar
heat_conduction( in ScalarField ss, in ScalarField lnrho) {
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
heat_conduction(in ScalarField ss, in ScalarField lnrho)
{
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
const Vector grad_ln_chi = - gradient(lnrho);
const Vector grad_ln_chi = -gradient(lnrho);
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
(AC_gamma - AcReal(1.)) * laplace(lnrho);
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
(AC_gamma - AcReal(1.)) * gradient(lnrho);
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) +
gradient(lnrho)) + grad_ln_chi;
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
(AC_gamma - AcReal(1.)) * laplace(lnrho);
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
(AC_gamma - AcReal(1.)) * gradient(lnrho);
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) +
grad_ln_chi;
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound);
return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound);
return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
}
Scalar
heating(const int i, const int j, const int k) {
return 1;
heating(const int i, const int j, const int k)
{
return 1;
}
Scalar
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) {
const Matrix S = stress_tensor(uu);
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
{
const Matrix S = stress_tensor(uu);
const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
const Vector j = (Scalar(1.) / AC_mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Scalar RHS = H_CONST - C_CONST
+ AC_eta * (AC_mu0) * dot(j, j)
+ Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S)
+ AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
const Vector j = (Scalar(1.) / AC_mu0) *
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) +
Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
return - dot(value(uu), gradient(ss))
+ inv_pT * RHS
+ heat_conduction(ss, lnrho);
return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho);
}
#endif
@@ -170,14 +173,15 @@ entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorFie
Scalar
heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{
const Matrix S = stress_tensor(uu);
const Scalar heat_diffusivity_k = 0.0008; //8e-4;
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) + heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) + AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) - (AC_gamma - 1) * value(tt) * divergence(uu);
const Matrix S = stress_tensor(uu);
const Scalar heat_diffusivity_k = 0.0008; // 8e-4;
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) +
heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) +
AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) -
(AC_gamma - 1) * value(tt) * divergence(uu);
}
#endif
#if LFORCING
Vector
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude)
@@ -191,8 +195,8 @@ simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude)
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
}
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable helicity
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable
// helicity
Vector
helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi)
{
@@ -206,24 +210,23 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
// MV: Good idea. No an immediate priority.
// Fun related article:
// https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
xx.x = xx.x*(2.0*M_PI/(AC_dsx*globalGridN.x));
xx.y = xx.y*(2.0*M_PI/(AC_dsy*globalGridN.y));
xx.z = xx.z*(2.0*M_PI/(AC_dsz*globalGridN.z));
xx.x = xx.x * (2.0 * M_PI / (AC_dsx * globalGridN.x));
xx.y = xx.y * (2.0 * M_PI / (AC_dsy * globalGridN.y));
xx.z = xx.z * (2.0 * M_PI / (AC_dsz * globalGridN.z));
Scalar cos_phi = cos(phi);
Scalar sin_phi = sin(phi);
Scalar cos_k_dot_x = cos(dot(k_force, xx));
Scalar sin_k_dot_x = sin(dot(k_force, xx));
Scalar cos_phi = cos(phi);
Scalar sin_phi = sin(phi);
Scalar cos_k_dot_x = cos(dot(k_force, xx));
Scalar sin_k_dot_x = sin(dot(k_force, xx));
// Phase affect only the x-component
//Scalar real_comp = cos_k_dot_x;
//Scalar imag_comp = sin_k_dot_x;
Scalar real_comp_phase = cos_k_dot_x*cos_phi - sin_k_dot_x*sin_phi;
Scalar imag_comp_phase = cos_k_dot_x*sin_phi + sin_k_dot_x*cos_phi;
// Scalar real_comp = cos_k_dot_x;
// Scalar imag_comp = sin_k_dot_x;
Scalar real_comp_phase = cos_k_dot_x * cos_phi - sin_k_dot_x * sin_phi;
Scalar imag_comp_phase = cos_k_dot_x * sin_phi + sin_k_dot_x * cos_phi;
Vector force = (Vector){ ff_re.x*real_comp_phase - ff_im.x*imag_comp_phase,
ff_re.y*real_comp_phase - ff_im.y*imag_comp_phase,
ff_re.z*real_comp_phase - ff_im.z*imag_comp_phase};
Vector force = (Vector){ff_re.x * real_comp_phase - ff_im.x * imag_comp_phase,
ff_re.y * real_comp_phase - ff_im.y * imag_comp_phase,
ff_re.z * real_comp_phase - ff_im.z * imag_comp_phase};
return force;
}
@@ -231,37 +234,39 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
Vector
forcing(int3 globalVertexIdx, Scalar dt)
{
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx,
globalGridN.y * AC_dsy,
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx, globalGridN.y * AC_dsy,
globalGridN.z * AC_dsz}; // source (origin)
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
const Scalar cs2 = AC_cs2_sound;
const Scalar cs = sqrt(cs2);
const Scalar cs = sqrt(cs2);
//Placeholders until determined properly
// Placeholders until determined properly
Scalar magnitude = AC_forcing_magnitude;
Scalar phase = AC_forcing_phase;
Vector k_force = (Vector){ AC_k_forcex, AC_k_forcey, AC_k_forcez};
Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez};
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
// Determine that forcing funtion type at this point.
// Vector force = simple_vortex_forcing(a, xx, magnitude);
// Vector force = simple_outward_flow_forcing(a, xx, magnitude);
Vector force = helical_forcing(magnitude, k_force, xx, ff_re, ff_im, phase);
//Determine that forcing funtion type at this point.
//Vector force = simple_vortex_forcing(a, xx, magnitude);
//Vector force = simple_outward_flow_forcing(a, xx, magnitude);
Vector force = helical_forcing(magnitude, k_force, xx, ff_re,ff_im, phase);
// Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
const Scalar NN = cs * sqrt(AC_kaver * cs);
// MV: Like in the Pencil Code. I don't understandf the logic here.
force.x = sqrt(dt) * NN * force.x;
force.y = sqrt(dt) * NN * force.y;
force.z = sqrt(dt) * NN * force.z;
//Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
const Scalar NN = cs*sqrt(AC_kaver*cs);
//MV: Like in the Pencil Code. I don't understandf the logic here.
force.x = sqrt(dt)*NN*force.x;
force.y = sqrt(dt)*NN*force.y;
force.z = sqrt(dt)*NN*force.z;
if (is_valid(force)) { return force; }
else { return (Vector){0, 0, 0}; }
if (is_valid(force)) {
return force;
}
else {
return (Vector){0, 0, 0};
}
}
#endif // LFORCING
@@ -271,12 +276,11 @@ in ScalarField lnrho(VTXBUF_LNRHO);
out ScalarField out_lnrho(VTXBUF_LNRHO);
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
out VectorField out_uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
#if LMAGNETIC
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
in VectorField aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
out VectorField out_aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
#endif
#if LENTROPY
@@ -290,26 +294,27 @@ out ScalarField out_tt(VTXBUF_TEMPERATURE);
#endif
Kernel void
solve(Scalar dt) {
solve(Scalar dt)
{
out_lnrho = rk3(out_lnrho, lnrho, continuity(uu, lnrho), dt);
#if LMAGNETIC
#if LMAGNETIC
out_aa = rk3(out_aa, aa, induction(uu, aa), dt);
#endif
#endif
#if LENTROPY
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt);
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
#elif LTEMPERATURE
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, tt), dt);
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
#else
out_uu = rk3(out_uu, uu, momentum(uu, lnrho), dt);
#endif
#if LENTROPY
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt);
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
#elif LTEMPERATURE
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, tt), dt);
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
#else
out_uu = rk3(out_uu, uu, momentum(uu, lnrho), dt);
#endif
#if LFORCING
#if LFORCING
if (step_number == 2) {
out_uu = out_uu + forcing(globalVertexIdx, dt);
}
#endif
#endif
}