Updated stencil_process.sps with the revised syntax for real literals
This commit is contained in:
@@ -23,7 +23,7 @@ gradients(in VectorField uu)
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
#if LSINK
|
||||
#if LSINK
|
||||
Vector
|
||||
sink_gravity(int3 globalVertexIdx){
|
||||
int accretion_switch = int(AC_switch_accretion);
|
||||
@@ -35,11 +35,11 @@ sink_gravity(int3 globalVertexIdx){
|
||||
const Scalar sink_mass = AC_M_sink;
|
||||
const Vector sink_pos = (Vector){AC_sink_pos_x,
|
||||
AC_sink_pos_y,
|
||||
AC_sink_pos_z};
|
||||
AC_sink_pos_z};
|
||||
const Scalar distance = length(grid_pos - sink_pos);
|
||||
const Scalar soft = AC_soft;
|
||||
//MV: The commit 083ff59 had AC_G_const defined wrong here in DSL making it exxessively strong.
|
||||
//MV: Scalar gravity_magnitude = ... below is correct!
|
||||
//MV: Scalar gravity_magnitude = ... below is correct!
|
||||
const Scalar gravity_magnitude = (AC_G_const * sink_mass) / pow(((distance * distance) + soft*soft), 1.5);
|
||||
const Vector direction = (Vector){(sink_pos.x - grid_pos.x) / distance,
|
||||
(sink_pos.y - grid_pos.y) / distance,
|
||||
@@ -60,14 +60,14 @@ truelove_density(in ScalarField lnrho){
|
||||
const Scalar rho = exp(value(lnrho));
|
||||
const Scalar Jeans_length_squared = (M_PI * AC_cs2_sound) / (AC_G_const * rho);
|
||||
const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) / (AC_G_const * AC_dsx * AC_dsx);
|
||||
//TODO: AC_dsx will cancel out, deal with it later for optimization.
|
||||
|
||||
//TODO: AC_dsx will cancel out, deal with it later for optimization.
|
||||
|
||||
Scalar accretion_rho = TJ_rho;
|
||||
|
||||
|
||||
return accretion_rho;
|
||||
}
|
||||
|
||||
// This controls accretion of density/mass to the sink particle.
|
||||
// This controls accretion of density/mass to the sink particle.
|
||||
Scalar
|
||||
sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
|
||||
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
@@ -78,11 +78,11 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
|
||||
AC_sink_pos_z};
|
||||
const Scalar profile_range = AC_accretion_range;
|
||||
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
Scalar accretion_density;
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
Scalar accretion_density;
|
||||
Scalar weight;
|
||||
|
||||
if (accretion_switch == 1){
|
||||
if (accretion_switch == 1){
|
||||
if ((accretion_distance) <= profile_range){
|
||||
//weight = Scalar(1.0);
|
||||
//Hann window function
|
||||
@@ -91,23 +91,23 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
|
||||
} else {
|
||||
weight = Scalar(0.0);
|
||||
}
|
||||
|
||||
//Truelove criterion is used as a kind of arbitrary density floor.
|
||||
|
||||
//Truelove criterion is used as a kind of arbitrary density floor.
|
||||
const Scalar lnrho_min = log(truelove_density(lnrho));
|
||||
Scalar rate;
|
||||
Scalar rate;
|
||||
if (value(lnrho) > lnrho_min) {
|
||||
rate = (exp(value(lnrho)) - exp(lnrho_min)) / dt;
|
||||
} else {
|
||||
} else {
|
||||
rate = Scalar(0.0);
|
||||
}
|
||||
accretion_density = weight * rate ;
|
||||
} else {
|
||||
accretion_density = Scalar(0.0);
|
||||
accretion_density = Scalar(0.0);
|
||||
}
|
||||
return accretion_density;
|
||||
}
|
||||
}
|
||||
|
||||
// This controls accretion of velocity to the sink particle.
|
||||
// This controls accretion of velocity to the sink particle.
|
||||
Vector
|
||||
sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
|
||||
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
@@ -117,15 +117,15 @@ sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
|
||||
AC_sink_pos_y,
|
||||
AC_sink_pos_z};
|
||||
const Scalar profile_range = AC_accretion_range;
|
||||
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
Vector accretion_velocity;
|
||||
const Scalar accretion_distance = length(grid_pos - sink_pos);
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
Vector accretion_velocity;
|
||||
|
||||
if (accretion_switch == 1){
|
||||
Scalar weight;
|
||||
// Step function weighting
|
||||
// Arch of a cosine function?
|
||||
// Cubic spline x^3 - x in range [-0.5 , 0.5]
|
||||
// Arch of a cosine function?
|
||||
// Cubic spline x^3 - x in range [-0.5 , 0.5]
|
||||
if ((accretion_distance) <= profile_range){
|
||||
//weight = Scalar(1.0);
|
||||
//Hann window function
|
||||
@@ -136,12 +136,12 @@ sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
|
||||
}
|
||||
|
||||
|
||||
Vector rate;
|
||||
// MV: Could we use divergence here ephasize velocitie which are compressive and
|
||||
// MV: not absorbins stuff that would not be accreted anyway?
|
||||
Vector rate;
|
||||
// MV: Could we use divergence here ephasize velocitie which are compressive and
|
||||
// MV: not absorbins stuff that would not be accreted anyway?
|
||||
if (length(value(uu)) > Scalar(0.0)) {
|
||||
rate = (Scalar(1.0)/dt) * value(uu);
|
||||
} else {
|
||||
} else {
|
||||
rate = (Vector){0.0, 0.0, 0.0};
|
||||
}
|
||||
accretion_velocity = weight * rate ;
|
||||
@@ -154,7 +154,7 @@ sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
|
||||
|
||||
|
||||
Scalar
|
||||
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
||||
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
||||
{
|
||||
return -dot(value(uu), gradient(lnrho))
|
||||
#if LUPWD
|
||||
@@ -162,7 +162,7 @@ continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar
|
||||
+ upwd_der6(uu, lnrho)
|
||||
#endif
|
||||
#if LSINK
|
||||
- sink_accretion(globalVertexIdx, lnrho, dt) / exp(value(lnrho))
|
||||
- sink_accretion(globalVertexIdx, lnrho, dt) / exp(value(lnrho))
|
||||
#endif
|
||||
- divergence(uu);
|
||||
}
|
||||
@@ -171,33 +171,33 @@ continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar
|
||||
|
||||
#if LENTROPY
|
||||
Vector
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt)
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt)
|
||||
{
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
|
||||
(AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
|
||||
const Vector j = (Scalar(1.) / AC_mu0) *
|
||||
const Vector j = (Scalar(1.0) / AC_mu0) *
|
||||
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Vector B = curl(aa);
|
||||
// TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
|
||||
const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));
|
||||
const Scalar inv_rho = Scalar(1.0) / exp(value(lnrho));
|
||||
|
||||
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
|
||||
// \1
|
||||
const Vector mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
|
||||
cs2 * ((Scalar(1.0) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
|
||||
inv_rho * cross(j, B) +
|
||||
AC_nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) +
|
||||
(laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
//Gravity term
|
||||
+ sink_gravity(globalVertexIdx)
|
||||
+ sink_gravity(globalVertexIdx)
|
||||
//Corresponding loss of momentum
|
||||
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
|
||||
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
|
||||
;
|
||||
;
|
||||
#else
|
||||
;
|
||||
#endif
|
||||
@@ -205,7 +205,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
}
|
||||
#elif LTEMPERATURE
|
||||
Vector
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
{
|
||||
Vector mom;
|
||||
|
||||
@@ -215,8 +215,8 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
(gradient(tt) + value(tt) * gradient(lnrho));
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) - pressure_term +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
+ sink_gravity(globalVertexIdx);
|
||||
@@ -231,7 +231,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
}
|
||||
#else
|
||||
Vector
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
||||
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
|
||||
{
|
||||
Vector mom;
|
||||
|
||||
@@ -240,15 +240,15 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar d
|
||||
// Isothermal: we have constant speed of sound
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
+ sink_gravity(globalVertexIdx)
|
||||
//Corresponding loss of momentum
|
||||
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
|
||||
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
|
||||
;
|
||||
;
|
||||
#else
|
||||
;
|
||||
#endif
|
||||
@@ -283,7 +283,7 @@ Scalar
|
||||
lnT(in ScalarField ss, in ScalarField lnrho)
|
||||
{
|
||||
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
|
||||
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
|
||||
(AC_gamma - Scalar(1.0)) * (value(lnrho) - AC_lnrho0);
|
||||
return lnT;
|
||||
}
|
||||
|
||||
@@ -291,14 +291,14 @@ lnT(in ScalarField ss, in ScalarField lnrho)
|
||||
Scalar
|
||||
heat_conduction(in ScalarField ss, in ScalarField lnrho)
|
||||
{
|
||||
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
|
||||
const Scalar inv_AC_cp_sound = AcReal(1.0) / AC_cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = -gradient(lnrho);
|
||||
|
||||
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
|
||||
(AC_gamma - AcReal(1.)) * laplace(lnrho);
|
||||
(AC_gamma - AcReal(1.0)) * laplace(lnrho);
|
||||
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
|
||||
(AC_gamma - AcReal(1.)) * gradient(lnrho);
|
||||
(AC_gamma - AcReal(1.0)) * gradient(lnrho);
|
||||
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) +
|
||||
grad_ln_chi;
|
||||
|
||||
@@ -316,11 +316,11 @@ Scalar
|
||||
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
|
||||
{
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
|
||||
const Vector j = (Scalar(1.) / AC_mu0) *
|
||||
const Scalar inv_pT = Scalar(1.0) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
|
||||
const Vector j = (Scalar(1.0) / AC_mu0) *
|
||||
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) +
|
||||
Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
|
||||
Scalar(2.0) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
|
||||
AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
|
||||
|
||||
return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho);
|
||||
@@ -335,7 +335,7 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
const Scalar heat_diffusivity_k = 0.0008; // 8e-4;
|
||||
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) +
|
||||
heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) +
|
||||
AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) -
|
||||
AC_nu_visc * contract(S) * (Scalar(1.0) / AC_cv_sound) -
|
||||
(AC_gamma - 1) * value(tt) * divergence(uu);
|
||||
}
|
||||
#endif
|
||||
@@ -343,18 +343,18 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
#if LFORCING
|
||||
Vector
|
||||
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude){
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
|
||||
if (accretion_switch == 0){
|
||||
return magnitude * cross(normalized(b - a), (Vector){ 0, 0, 1}); // Vortex
|
||||
} else {
|
||||
return (Vector){0,0,0};
|
||||
} else {
|
||||
return (Vector){0,0,0};
|
||||
}
|
||||
}
|
||||
}
|
||||
Vector
|
||||
simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude){
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
if (accretion_switch == 0){
|
||||
if (accretion_switch == 0){
|
||||
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
|
||||
} else {
|
||||
return (Vector){0,0,0};
|
||||
@@ -403,7 +403,7 @@ forcing(int3 globalVertexIdx, Scalar dt)
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
if (accretion_switch == 0){
|
||||
|
||||
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx,
|
||||
Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx,
|
||||
globalGridN.y * AC_dsy,
|
||||
globalGridN.z * AC_dsz}; // source (origin)
|
||||
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
@@ -411,27 +411,27 @@ forcing(int3 globalVertexIdx, Scalar dt)
|
||||
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
|
||||
const Scalar cs2 = AC_cs2_sound;
|
||||
const Scalar cs = sqrt(cs2);
|
||||
|
||||
|
||||
//Placeholders until determined properly
|
||||
Scalar magnitude = AC_forcing_magnitude;
|
||||
Scalar phase = AC_forcing_phase;
|
||||
Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez};
|
||||
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
|
||||
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
|
||||
|
||||
|
||||
|
||||
|
||||
//Determine that forcing funtion type at this point.
|
||||
//Vector force = simple_vortex_forcing(a, xx, magnitude);
|
||||
//Vector force = simple_outward_flow_forcing(a, xx, magnitude);
|
||||
Vector force = helical_forcing(magnitude, k_force, xx, ff_re,ff_im, phase);
|
||||
|
||||
|
||||
//Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
|
||||
const Scalar NN = cs*sqrt(AC_kaver*cs);
|
||||
//MV: Like in the Pencil Code. I don't understandf the logic here.
|
||||
force.x = sqrt(dt)*NN*force.x;
|
||||
force.y = sqrt(dt)*NN*force.y;
|
||||
force.z = sqrt(dt)*NN*force.z;
|
||||
|
||||
|
||||
if (is_valid(force)) { return force; }
|
||||
else { return (Vector){0, 0, 0}; }
|
||||
} else {
|
||||
@@ -496,7 +496,7 @@ solve()
|
||||
|
||||
#if LSINK
|
||||
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), dt);// unit now is rho!
|
||||
|
||||
|
||||
if (step_number == 2) {
|
||||
out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz;// unit is now mass!
|
||||
}
|
||||
|
Reference in New Issue
Block a user