Updated stencil_process.sps with the revised syntax for real literals
This commit is contained in:
@@ -176,20 +176,20 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
|
||||
(AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
|
||||
const Vector j = (Scalar(1.) / AC_mu0) *
|
||||
const Vector j = (Scalar(1.0) / AC_mu0) *
|
||||
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Vector B = curl(aa);
|
||||
// TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
|
||||
const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));
|
||||
const Scalar inv_rho = Scalar(1.0) / exp(value(lnrho));
|
||||
|
||||
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
|
||||
// \1
|
||||
const Vector mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
|
||||
cs2 * ((Scalar(1.0) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
|
||||
inv_rho * cross(j, B) +
|
||||
AC_nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) +
|
||||
(laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
//Gravity term
|
||||
@@ -215,8 +215,8 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
|
||||
(gradient(tt) + value(tt) * gradient(lnrho));
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) - pressure_term +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
+ sink_gravity(globalVertexIdx);
|
||||
@@ -240,8 +240,8 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar d
|
||||
// Isothermal: we have constant speed of sound
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) +
|
||||
AC_nu_visc * (laplace_vec(uu) + Scalar(1.0 / 3.0) * gradient_of_divergence(uu) +
|
||||
Scalar(2.0) * mul(S, gradient(lnrho))) +
|
||||
AC_zeta * gradient_of_divergence(uu)
|
||||
#if LSINK
|
||||
+ sink_gravity(globalVertexIdx)
|
||||
@@ -283,7 +283,7 @@ Scalar
|
||||
lnT(in ScalarField ss, in ScalarField lnrho)
|
||||
{
|
||||
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
|
||||
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
|
||||
(AC_gamma - Scalar(1.0)) * (value(lnrho) - AC_lnrho0);
|
||||
return lnT;
|
||||
}
|
||||
|
||||
@@ -291,14 +291,14 @@ lnT(in ScalarField ss, in ScalarField lnrho)
|
||||
Scalar
|
||||
heat_conduction(in ScalarField ss, in ScalarField lnrho)
|
||||
{
|
||||
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
|
||||
const Scalar inv_AC_cp_sound = AcReal(1.0) / AC_cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = -gradient(lnrho);
|
||||
|
||||
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
|
||||
(AC_gamma - AcReal(1.)) * laplace(lnrho);
|
||||
(AC_gamma - AcReal(1.0)) * laplace(lnrho);
|
||||
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
|
||||
(AC_gamma - AcReal(1.)) * gradient(lnrho);
|
||||
(AC_gamma - AcReal(1.0)) * gradient(lnrho);
|
||||
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) +
|
||||
grad_ln_chi;
|
||||
|
||||
@@ -316,11 +316,11 @@ Scalar
|
||||
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
|
||||
{
|
||||
const Matrix S = stress_tensor(uu);
|
||||
const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
|
||||
const Vector j = (Scalar(1.) / AC_mu0) *
|
||||
const Scalar inv_pT = Scalar(1.0) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
|
||||
const Vector j = (Scalar(1.0) / AC_mu0) *
|
||||
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
|
||||
const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) +
|
||||
Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
|
||||
Scalar(2.0) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
|
||||
AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
|
||||
|
||||
return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho);
|
||||
@@ -335,7 +335,7 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
|
||||
const Scalar heat_diffusivity_k = 0.0008; // 8e-4;
|
||||
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) +
|
||||
heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) +
|
||||
AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) -
|
||||
AC_nu_visc * contract(S) * (Scalar(1.0) / AC_cv_sound) -
|
||||
(AC_gamma - 1) * value(tt) * divergence(uu);
|
||||
}
|
||||
#endif
|
||||
@@ -403,7 +403,7 @@ forcing(int3 globalVertexIdx, Scalar dt)
|
||||
int accretion_switch = AC_switch_accretion;
|
||||
if (accretion_switch == 0){
|
||||
|
||||
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx,
|
||||
Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx,
|
||||
globalGridN.y * AC_dsy,
|
||||
globalGridN.z * AC_dsz}; // source (origin)
|
||||
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
|
||||
|
Reference in New Issue
Block a user