On second thought, let's revert the changes in mhd_solver and use the file I already modified instead of doing the same changes twice

This commit is contained in:
jpekkila
2019-10-07 17:29:53 +03:00
parent 16c8b1e748
commit 8c1e603a98
3 changed files with 175 additions and 156 deletions

View File

@@ -1,4 +1,17 @@
#pragma once #include "stencil_definition.sdh"
Preprocessed Scalar
value(in ScalarField vertex)
{
return vertex[vertexIdx];
}
Preprocessed Vector
gradient(in ScalarField vertex)
{
return (Vector){derx(vertexIdx, vertex), dery(vertexIdx, vertex), derz(vertexIdx, vertex)};
}
#if LUPWD #if LUPWD
Preprocessed Scalar Preprocessed Scalar
@@ -47,3 +60,16 @@ der6z_upwd(in ScalarField vertex)
} }
#endif #endif
Preprocessed Matrix
hessian(in ScalarField vertex)
{
Matrix hessian;
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex),
derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
return hessian;
}

View File

@@ -1,4 +1,3 @@
#pragma once
#define LDENSITY (1) #define LDENSITY (1)
#define LHYDRO (1) #define LHYDRO (1)
#define LMAGNETIC (1) #define LMAGNETIC (1)
@@ -9,8 +8,6 @@
#define LSINK (0) #define LSINK (0)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter #define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
#define H_CONST (0) // TODO: make an actual config parameter
#define C_CONST (0) // TODO: make an actual config parameter
// Int params // Int params
uniform int AC_max_steps; uniform int AC_max_steps;
@@ -23,6 +20,9 @@ uniform int AC_start_step;
uniform Scalar AC_dt; uniform Scalar AC_dt;
uniform Scalar AC_max_time; uniform Scalar AC_max_time;
// Spacing // Spacing
uniform Scalar AC_dsx;
uniform Scalar AC_dsy;
uniform Scalar AC_dsz;
uniform Scalar AC_dsmin; uniform Scalar AC_dsmin;
// physical grid // physical grid
uniform Scalar AC_xlen; uniform Scalar AC_xlen;
@@ -96,6 +96,9 @@ uniform Scalar AC_GM_star;
uniform Scalar AC_unit_mass; uniform Scalar AC_unit_mass;
uniform Scalar AC_sq2GM_star; uniform Scalar AC_sq2GM_star;
uniform Scalar AC_cs2_sound; uniform Scalar AC_cs2_sound;
uniform Scalar AC_inv_dsx;
uniform Scalar AC_inv_dsy;
uniform Scalar AC_inv_dsz;
/* /*
* ============================================================================= * =============================================================================
@@ -131,3 +134,4 @@ uniform ScalarField VTXBUF_LNRHO;
#if LSINK #if LSINK
uniform ScalarField VTXBUF_ACCRETION; uniform ScalarField VTXBUF_ACCRETION;
#endif #endif

View File

@@ -1,10 +1,13 @@
#include <stdderiv.h> #include "stencil_definition.sdh"
#include "stencil_assembly.h" Vector
#include "stencil_definition.h" value(in VectorField uu)
{
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
}
#if LUPWD #if LUPWD
Device Scalar Scalar
upwd_der6(in VectorField uu, in ScalarField lnrho) upwd_der6(in VectorField uu, in ScalarField lnrho)
{ {
Scalar uux = fabs(value(uu).x); Scalar uux = fabs(value(uu).x);
@@ -14,16 +17,15 @@ upwd_der6(in VectorField uu, in ScalarField lnrho)
} }
#endif #endif
Device Matrix Matrix
gradients(in VectorField uu) gradients(in VectorField uu)
{ {
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)}; return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
} }
#if LSINK #if LSINK
Device Vector Vector
sink_gravity(int3 globalVertexIdx) sink_gravity(int3 globalVertexIdx){
{
int accretion_switch = int(AC_switch_accretion); int accretion_switch = int(AC_switch_accretion);
if (accretion_switch == 1){ if (accretion_switch == 1){
Vector force_gravity; Vector force_gravity;
@@ -31,34 +33,33 @@ sink_gravity(int3 globalVertexIdx)
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy, (globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; (globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
const Scalar sink_mass = AC_M_sink; const Scalar sink_mass = AC_M_sink;
const Vector sink_pos = (Vector){AC_sink_pos_x, AC_sink_pos_y, AC_sink_pos_z}; const Vector sink_pos = (Vector){AC_sink_pos_x,
AC_sink_pos_y,
AC_sink_pos_z};
const Scalar distance = length(grid_pos - sink_pos); const Scalar distance = length(grid_pos - sink_pos);
const Scalar soft = AC_soft; const Scalar soft = AC_soft;
// MV: The commit 083ff59 had AC_G_const defined wrong here in DSL making it exxessively //MV: The commit 083ff59 had AC_G_const defined wrong here in DSL making it exxessively strong.
// strong. MV: Scalar gravity_magnitude = ... below is correct! //MV: Scalar gravity_magnitude = ... below is correct!
const Scalar gravity_magnitude = (AC_G_const * sink_mass) / const Scalar gravity_magnitude = (AC_G_const * sink_mass) / pow(((distance * distance) + soft*soft), 1.5);
pow(((distance * distance) + soft * soft), 1.5);
const Vector direction = (Vector){(sink_pos.x - grid_pos.x) / distance, const Vector direction = (Vector){(sink_pos.x - grid_pos.x) / distance,
(sink_pos.y - grid_pos.y) / distance, (sink_pos.y - grid_pos.y) / distance,
(sink_pos.z - grid_pos.z) / distance}; (sink_pos.z - grid_pos.z) / distance};
force_gravity = gravity_magnitude * direction; force_gravity = gravity_magnitude * direction;
return force_gravity; return force_gravity;
} } else {
else {
return (Vector){0.0, 0.0, 0.0}; return (Vector){0.0, 0.0, 0.0};
} }
} }
#endif #endif
#if LSINK #if LSINK
// Give Truelove density // Give Truelove density
Device Scalar Scalar
truelove_density(in ScalarField lnrho) truelove_density(in ScalarField lnrho){
{
const Scalar rho = exp(value(lnrho)); const Scalar rho = exp(value(lnrho));
const Scalar Jeans_length_squared = (M_PI * AC_cs2_sound) / (AC_G_const * rho); const Scalar Jeans_length_squared = (M_PI * AC_cs2_sound) / (AC_G_const * rho);
const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) / const Scalar TJ_rho = ((M_PI) * ((AC_dsx * AC_dsx) / Jeans_length_squared) * AC_cs2_sound) / (AC_G_const * AC_dsx * AC_dsx);
(AC_G_const * AC_dsx * AC_dsx);
//TODO: AC_dsx will cancel out, deal with it later for optimization. //TODO: AC_dsx will cancel out, deal with it later for optimization.
Scalar accretion_rho = TJ_rho; Scalar accretion_rho = TJ_rho;
@@ -67,13 +68,14 @@ truelove_density(in ScalarField lnrho)
} }
// This controls accretion of density/mass to the sink particle. // This controls accretion of density/mass to the sink particle.
Device Scalar Scalar
sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt) sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt){
{
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx, const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy, (globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; (globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
const Vector sink_pos = (Vector){AC_sink_pos_x, AC_sink_pos_y, AC_sink_pos_z}; const Vector sink_pos = (Vector){AC_sink_pos_x,
AC_sink_pos_y,
AC_sink_pos_z};
const Scalar profile_range = AC_accretion_range; const Scalar profile_range = AC_accretion_range;
const Scalar accretion_distance = length(grid_pos - sink_pos); const Scalar accretion_distance = length(grid_pos - sink_pos);
int accretion_switch = AC_switch_accretion; int accretion_switch = AC_switch_accretion;
@@ -86,8 +88,7 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt)
//Hann window function //Hann window function
Scalar window_ratio = accretion_distance/profile_range; Scalar window_ratio = accretion_distance/profile_range;
weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio)); weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio));
} } else {
else {
weight = Scalar(0.0); weight = Scalar(0.0);
} }
@@ -96,26 +97,25 @@ sink_accretion(int3 globalVertexIdx, in ScalarField lnrho, Scalar dt)
Scalar rate; Scalar rate;
if (value(lnrho) > lnrho_min) { if (value(lnrho) > lnrho_min) {
rate = (exp(value(lnrho)) - exp(lnrho_min)) / dt; rate = (exp(value(lnrho)) - exp(lnrho_min)) / dt;
} } else {
else {
rate = Scalar(0.0); rate = Scalar(0.0);
} }
accretion_density = weight * rate ; accretion_density = weight * rate ;
} } else {
else {
accretion_density = Scalar(0.0); accretion_density = Scalar(0.0);
} }
return accretion_density; return accretion_density;
} }
// This controls accretion of velocity to the sink particle. // This controls accretion of velocity to the sink particle.
Device Vector Vector
sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt) {
{
const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx, const Vector grid_pos = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy, (globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; (globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz};
const Vector sink_pos = (Vector){AC_sink_pos_x, AC_sink_pos_y, AC_sink_pos_z}; const Vector sink_pos = (Vector){AC_sink_pos_x,
AC_sink_pos_y,
AC_sink_pos_z};
const Scalar profile_range = AC_accretion_range; const Scalar profile_range = AC_accretion_range;
const Scalar accretion_distance = length(grid_pos - sink_pos); const Scalar accretion_distance = length(grid_pos - sink_pos);
int accretion_switch = AC_switch_accretion; int accretion_switch = AC_switch_accretion;
@@ -131,30 +131,29 @@ sink_accretion_velocity(int3 globalVertexIdx, in VectorField uu, Scalar dt)
//Hann window function //Hann window function
Scalar window_ratio = accretion_distance/profile_range; Scalar window_ratio = accretion_distance/profile_range;
weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio)); weight = Scalar(0.5)*(Scalar(1.0) - cos(Scalar(2.0)*M_PI*window_ratio));
} } else {
else {
weight = Scalar(0.0); weight = Scalar(0.0);
} }
Vector rate; Vector rate;
// MV: Could we use divergence here ephasize velocitie which are compressive and // MV: Could we use divergence here ephasize velocitie which are compressive and
// MV: not absorbins stuff that would not be accreted anyway? // MV: not absorbins stuff that would not be accreted anyway?
if (length(value(uu)) > Scalar(0.0)) { if (length(value(uu)) > Scalar(0.0)) {
rate = (Scalar(1.0)/dt) * value(uu); rate = (Scalar(1.0)/dt) * value(uu);
} } else {
else {
rate = (Vector){0.0, 0.0, 0.0}; rate = (Vector){0.0, 0.0, 0.0};
} }
accretion_velocity = weight * rate ; accretion_velocity = weight * rate ;
} } else {
else {
accretion_velocity = (Vector){0.0, 0.0, 0.0}; accretion_velocity = (Vector){0.0, 0.0, 0.0};
} }
return accretion_velocity; return accretion_velocity;
} }
#endif #endif
Device Scalar
Scalar
continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt) continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
{ {
return -dot(value(uu), gradient(lnrho)) return -dot(value(uu), gradient(lnrho))
@@ -168,10 +167,11 @@ continuity(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar
- divergence(uu); - divergence(uu);
} }
#if LENTROPY #if LENTROPY
Device Vector Vector
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, Scalar dt)
in VectorField aa, Scalar dt)
{ {
const Matrix S = stress_tensor(uu); const Matrix S = stress_tensor(uu);
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound + const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
@@ -195,8 +195,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
//Gravity term //Gravity term
+ sink_gravity(globalVertexIdx) + sink_gravity(globalVertexIdx)
//Corresponding loss of momentum //Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // - //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
//Correction factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014) sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
; ;
#else #else
@@ -205,7 +204,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
return mom; return mom;
} }
#elif LTEMPERATURE #elif LTEMPERATURE
Device Vector Vector
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt) momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{ {
Vector mom; Vector mom;
@@ -231,7 +230,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, in Scala
return mom; return mom;
} }
#else #else
Device Vector Vector
momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt) momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar dt)
{ {
Vector mom; Vector mom;
@@ -247,8 +246,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar d
#if LSINK #if LSINK
+ sink_gravity(globalVertexIdx) + sink_gravity(globalVertexIdx)
//Corresponding loss of momentum //Corresponding loss of momentum
- //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction - //(Scalar(1.0) / Scalar( (AC_dsx*AC_dsy*AC_dsz) * exp(value(lnrho)))) * // Correction factor by unit mass
//factor by unit mass
sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014) sink_accretion_velocity(globalVertexIdx, uu, dt) // As in Lee et al.(2014)
; ;
#else #else
@@ -263,7 +261,7 @@ momentum(int3 globalVertexIdx, in VectorField uu, in ScalarField lnrho, Scalar d
} }
#endif #endif
Device Vector Vector
induction(in VectorField uu, in VectorField aa) induction(in VectorField uu, in VectorField aa)
{ {
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla // Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
@@ -281,7 +279,7 @@ induction(in VectorField uu, in VectorField aa)
} }
#if LENTROPY #if LENTROPY
Device Scalar Scalar
lnT(in ScalarField ss, in ScalarField lnrho) lnT(in ScalarField ss, in ScalarField lnrho)
{ {
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound + const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
@@ -290,7 +288,7 @@ lnT(in ScalarField ss, in ScalarField lnrho)
} }
// Nabla dot (K nabla T) / (rho T) // Nabla dot (K nabla T) / (rho T)
Device Scalar Scalar
heat_conduction(in ScalarField ss, in ScalarField lnrho) heat_conduction(in ScalarField ss, in ScalarField lnrho)
{ {
const Scalar inv_AC_cp_sound = AcReal(1.0) / AC_cp_sound; const Scalar inv_AC_cp_sound = AcReal(1.0) / AC_cp_sound;
@@ -308,13 +306,13 @@ heat_conduction(in ScalarField ss, in ScalarField lnrho)
return AC_cp_sound * chi * (first_term + dot(second_term, third_term)); return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
} }
Device Scalar Scalar
heating(const int i, const int j, const int k) heating(const int i, const int j, const int k)
{ {
return 1; return 1;
} }
Device Scalar Scalar
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
{ {
const Matrix S = stress_tensor(uu); const Matrix S = stress_tensor(uu);
@@ -330,7 +328,7 @@ entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorFie
#endif #endif
#if LTEMPERATURE #if LTEMPERATURE
Device Scalar Scalar
heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt) heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{ {
const Matrix S = stress_tensor(uu); const Matrix S = stress_tensor(uu);
@@ -343,33 +341,29 @@ heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
#endif #endif
#if LFORCING #if LFORCING
Device Vector Vector
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude) simple_vortex_forcing(Vector a, Vector b, Scalar magnitude){
{
int accretion_switch = AC_switch_accretion; int accretion_switch = AC_switch_accretion;
if (accretion_switch == 0){ if (accretion_switch == 0){
return magnitude * cross(normalized(b - a), (Vector){ 0, 0, 1}); // Vortex return magnitude * cross(normalized(b - a), (Vector){ 0, 0, 1}); // Vortex
} } else {
else {
return (Vector){0,0,0}; return (Vector){0,0,0};
} }
} }
Device Vector Vector
simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude) simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude){
{
int accretion_switch = AC_switch_accretion; int accretion_switch = AC_switch_accretion;
if (accretion_switch == 0){ if (accretion_switch == 0){
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
} } else {
else {
return (Vector){0,0,0}; return (Vector){0,0,0};
} }
} }
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable // The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable
// helicity // helicity
Device Vector Vector
helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi) helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi)
{ {
// JP: This looks wrong: // JP: This looks wrong:
@@ -409,12 +403,12 @@ forcing(int3 globalVertexIdx, Scalar dt)
int accretion_switch = AC_switch_accretion; int accretion_switch = AC_switch_accretion;
if (accretion_switch == 0){ if (accretion_switch == 0){
Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx, globalGridN.y * AC_dsy, Vector a = Scalar(0.5) * (Vector){globalGridN.x * AC_dsx,
globalGridN.y * AC_dsy,
globalGridN.z * AC_dsz}; // source (origin) globalGridN.z * AC_dsz}; // source (origin)
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx, Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy, (globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * (globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
AC_dsz}; // sink (current index)
const Scalar cs2 = AC_cs2_sound; const Scalar cs2 = AC_cs2_sound;
const Scalar cs = sqrt(cs2); const Scalar cs = sqrt(cs2);
@@ -425,6 +419,7 @@ forcing(int3 globalVertexIdx, Scalar dt)
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez}; Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz}; Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
//Determine that forcing funtion type at this point. //Determine that forcing funtion type at this point.
//Vector force = simple_vortex_forcing(a, xx, magnitude); //Vector force = simple_vortex_forcing(a, xx, magnitude);
//Vector force = simple_outward_flow_forcing(a, xx, magnitude); //Vector force = simple_outward_flow_forcing(a, xx, magnitude);
@@ -437,14 +432,9 @@ forcing(int3 globalVertexIdx, Scalar dt)
force.y = sqrt(dt)*NN*force.y; force.y = sqrt(dt)*NN*force.y;
force.z = sqrt(dt)*NN*force.z; force.z = sqrt(dt)*NN*force.z;
if (is_valid(force)) { if (is_valid(force)) { return force; }
return force; else { return (Vector){0, 0, 0}; }
} } else {
else {
return (Vector){0, 0, 0};
}
}
else {
return (Vector){0,0,0}; return (Vector){0,0,0};
} }
} }
@@ -505,8 +495,7 @@ solve()
#endif #endif
#if LSINK #if LSINK
out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), out_accretion = rk3(out_accretion, accretion, sink_accretion(globalVertexIdx, lnrho, dt), dt);// unit now is rho!
dt); // unit now is rho!
if (step_number == 2) { if (step_number == 2) {
out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz;// unit is now mass! out_accretion = out_accretion * AC_dsx * AC_dsy * AC_dsz;// unit is now mass!