Modified the other sps files to use the new syntax. Though does not compile since there are some old/very old changes in the DSL that have not been updated to these files (f.ex. RK macro does not exist anymore, it's currently rk3)
This commit is contained in:
@@ -36,31 +36,31 @@ uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
value(in VectorField uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
gradients(in VectorField uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
continuity(in VectorField uu, in ScalarField lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
// Gravitation for in negative x-direction.
|
||||
Vector
|
||||
// Gravitation for in negative x-direction.
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
@@ -79,7 +79,7 @@ grav_force_line(const int3 vertexIdx)
|
||||
|
||||
#if LENTROPY
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa, const int3 vertexIdx) {
|
||||
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
@@ -104,7 +104,7 @@ momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa, const int3 v
|
||||
}
|
||||
#else
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
momentum(in VectorField uu, in ScalarField lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
@@ -123,7 +123,7 @@ momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
induction(in VectorField uu, in VectorField aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
@@ -141,7 +141,7 @@ induction(in Vector uu, in Vector aa) {
|
||||
|
||||
#if LENTROPY
|
||||
Scalar
|
||||
lnT( in Scalar ss, in Scalar lnrho) {
|
||||
lnT( in ScalarField ss, in ScalarField lnrho) {
|
||||
const Scalar lnT = LNT0 + value(ss) / cp_sound +
|
||||
(gamma - AcReal(1.)) * (value(lnrho) - LNRHO0);
|
||||
return lnT;
|
||||
@@ -149,7 +149,7 @@ lnT( in Scalar ss, in Scalar lnrho) {
|
||||
|
||||
// Nabla dot (K nabla T) / (rho T)
|
||||
Scalar
|
||||
heat_conduction( in Scalar ss, in Scalar lnrho) {
|
||||
heat_conduction( in ScalarField ss, in ScalarField lnrho) {
|
||||
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = (Vector) {
|
||||
@@ -174,7 +174,7 @@ heating(const int i, const int j, const int k) {
|
||||
}
|
||||
|
||||
Scalar
|
||||
entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa) {
|
||||
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) {
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
// nabla x nabla x A / mu0 = nabla(nabla dot A) - nabla^2(A)
|
||||
@@ -193,21 +193,21 @@ entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa) {
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
in ScalarField lnrho(VTXBUF_LNRHO);
|
||||
out ScalarField out_lnrho(VTXBUF_LNRHO);
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
|
||||
|
||||
|
||||
#if LMAGNETIC
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
#endif
|
||||
|
||||
#if LENTROPY
|
||||
in Scalar ss = VTXBUF_ENTROPY;
|
||||
out Scalar out_ss = VTXBUF_ENTROPY;
|
||||
in ScalarField ss(VTXBUF_ENTROPY);
|
||||
out ScalarField out_ss(VTXBUF_ENTROPY);
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
|
@@ -33,32 +33,32 @@ uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
value(in VectorField uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
gradients(in VectorField uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
continuity(in VectorField uu, in ScalarField lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
|
||||
// "Line-like" gravity with no y-component
|
||||
Vector
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
@@ -77,7 +77,7 @@ grav_force_line(const int3 vertexIdx)
|
||||
|
||||
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
momentum(in VectorField uu, in ScalarField lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
@@ -86,15 +86,15 @@ momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
||||
+ grav_force_line(vertexIdx);
|
||||
|
||||
|
||||
|
||||
return mom;
|
||||
}
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
induction(in VectorField uu, in VectorField aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
@@ -111,15 +111,16 @@ induction(in Vector uu, in Vector aa) {
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
in ScalarField lnrho(VTXBUF_LNRHO);
|
||||
out ScalarField out_lnrho(VTXBUF_LNRHO);
|
||||
|
||||
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
|
||||
#if LMAGNETIC
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
@@ -132,38 +133,3 @@ solve(Scalar dt) {
|
||||
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@@ -33,32 +33,32 @@ uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
Scalar
|
||||
distance(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
value(in VectorField uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
gradients(in VectorField uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
continuity(in VectorField uu, in ScalarField lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
|
||||
// "Line-like" gravity with no y-component
|
||||
Vector
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
@@ -82,7 +82,7 @@ grav_force_line(const int3 vertexIdx)
|
||||
|
||||
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
momentum(in VectorField uu, in ScalarField lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
@@ -91,15 +91,15 @@ momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
||||
+ grav_force_line(vertexIdx);
|
||||
|
||||
|
||||
|
||||
return mom;
|
||||
}
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
induction(in VectorField uu, in VectorField aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
@@ -116,15 +116,15 @@ induction(in Vector uu, in Vector aa) {
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
in ScalarField lnrho(VTXBUF_LNRHO);
|
||||
out ScalarField out_lnrho(VTXBUF_LNRHO);
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
|
||||
|
||||
#if LMAGNETIC
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
@@ -137,38 +137,3 @@ solve(Scalar dt) {
|
||||
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@@ -36,31 +36,31 @@ uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
value(in VectorField uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
gradients(in VectorField uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
continuity(in VectorField uu, in ScalarField lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
// "Line-like" gravity with no y-component
|
||||
Vector
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
@@ -84,7 +84,7 @@ grav_force_line(const int3 vertexIdx)
|
||||
|
||||
#if LENTROPY
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa, const int3 vertexIdx) {
|
||||
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
@@ -109,7 +109,7 @@ momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa, const int3 v
|
||||
}
|
||||
#else
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
momentum(in VectorField uu, in ScalarField lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
@@ -128,7 +128,7 @@ momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
induction(in VectorField uu, in VectorField aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
@@ -146,7 +146,7 @@ induction(in Vector uu, in Vector aa) {
|
||||
|
||||
#if LENTROPY
|
||||
Scalar
|
||||
lnT( in Scalar ss, in Scalar lnrho) {
|
||||
lnT( in ScalarField ss, in ScalarField lnrho) {
|
||||
const Scalar lnT = LNT0 + value(ss) / cp_sound +
|
||||
(gamma - AcReal(1.)) * (value(lnrho) - LNRHO0);
|
||||
return lnT;
|
||||
@@ -154,7 +154,7 @@ lnT( in Scalar ss, in Scalar lnrho) {
|
||||
|
||||
// Nabla dot (K nabla T) / (rho T)
|
||||
Scalar
|
||||
heat_conduction( in Scalar ss, in Scalar lnrho) {
|
||||
heat_conduction( in ScalarField ss, in ScalarField lnrho) {
|
||||
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = (Vector) {
|
||||
@@ -179,7 +179,7 @@ heating(const int i, const int j, const int k) {
|
||||
}
|
||||
|
||||
Scalar
|
||||
entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa) {
|
||||
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) {
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
// nabla x nabla x A / mu0 = nabla(nabla dot A) - nabla^2(A)
|
||||
@@ -198,21 +198,20 @@ entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa) {
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
in ScalarField lnrho(VTXBUF_LNRHO);
|
||||
out ScalarField out_lnrho(VTXBUF_LNRHO);
|
||||
|
||||
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
|
||||
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
|
||||
|
||||
#if LMAGNETIC
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
|
||||
#endif
|
||||
|
||||
#if LENTROPY
|
||||
in Scalar ss = VTXBUF_ENTROPY;
|
||||
out Scalar out_ss = VTXBUF_ENTROPY;
|
||||
in ScalarField ss(VTXBUF_ENTROPY);
|
||||
out ScalarField out_ss(VTXBUF_ENTROPY);
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
|
Reference in New Issue
Block a user