Merged in dsl_parameter_overhaul_2019-08-19 (pull request #6)

DSL user parameter overhaul
This commit is contained in:
jpekkila
2019-08-30 02:13:35 +00:00
committed by Miikka Väisälä
16 changed files with 589 additions and 411 deletions

View File

@@ -8,17 +8,21 @@ FILENAME="${FULL_NAME%.*}"
EXTENSION="${FULL_NAME##*.}"
if [ "${EXTENSION}" = "sas" ]; then
echo "Generating stencil assembly stage ${FILENAME}.sas -> stencil_assembly.cuh"
COMPILE_FLAGS="-sas" # Generate stencil assembly stage
CUH_FILENAME="stencil_assembly.cuh"
echo "Generating stencil assembly stage ${FILENAME}.sas -> ${CUH_FILENAME}"
elif [ "${EXTENSION}" = "sps" ]; then
echo "Generating stencil processing stage: ${FILENAME}.sps -> stencil_process.cuh"
COMPILE_FLAGS="-sps" # Generate stencil processing stage
CUH_FILENAME="stencil_process.cuh"
echo "Generating stencil processing stage: ${FILENAME}.sps -> ${CUH_FILENAME}"
elif [ "${EXTENSION}" = "sdh" ]; then
COMPILE_FLAGS="-sdh" # Generate stencil definition header
CUH_FILENAME="stencil_defines.h"
echo "Generating stencil definition header: ${FILENAME}.sdh -> ${CUH_FILENAME}"
else
echo "Error: unknown extension" ${EXTENSION} "of file" ${FULL_NAME}
echo "Extension should be either .sas or .sps"
echo "Extension should be either .sas, .sps or .sdh"
exit
fi
${ACC_DIR}/preprocess.sh $2 $1 | ${ACC_DIR}/build/acc ${COMPILE_FLAGS} > ${CUH_FILENAME}
${ACC_DIR}/preprocess.sh $1 | ${ACC_DIR}/build/acc ${COMPILE_FLAGS} > ${CUH_FILENAME}

5
acc/mhd_solver/.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
build
testbin
# Except this file
!.gitignore

View File

@@ -1,3 +1,5 @@
#include "stencil_definition.sdh"
Preprocessed Scalar
value(in ScalarField vertex)
{
@@ -7,9 +9,7 @@ value(in ScalarField vertex)
Preprocessed Vector
gradient(in ScalarField vertex)
{
return (Vector){derx(vertexIdx, vertex),
dery(vertexIdx, vertex),
derz(vertexIdx, vertex)};
return (Vector){derx(vertexIdx, vertex), dery(vertexIdx, vertex), derz(vertexIdx, vertex)};
}
#if LUPWD
@@ -17,46 +17,46 @@ gradient(in ScalarField vertex)
Preprocessed Scalar
der6x_upwd(in ScalarField vertex)
{
Scalar inv_ds = DCONST_REAL(AC_inv_dsx);
Scalar inv_ds = AC_inv_dsx;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
- Scalar(20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+ Scalar(15.0)*(vertex[vertexIdx.x+1, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-1, vertexIdx.y, vertexIdx.z])
- Scalar( 6.0)*(vertex[vertexIdx.x+2, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-2, vertexIdx.y, vertexIdx.z])
+ vertex[vertexIdx.x+3, vertexIdx.y, vertexIdx.z]
+ vertex[vertexIdx.x-3, vertexIdx.y, vertexIdx.z])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x + 1, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 1, vertexIdx.y, vertexIdx.z]) -
Scalar(6.0) * (vertex[vertexIdx.x + 2, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 2, vertexIdx.y, vertexIdx.z]) +
vertex[vertexIdx.x + 3, vertexIdx.y, vertexIdx.z] +
vertex[vertexIdx.x - 3, vertexIdx.y, vertexIdx.z])};
}
Preprocessed Scalar
der6y_upwd(in ScalarField vertex)
{
Scalar inv_ds = DCONST_REAL(AC_inv_dsy);
Scalar inv_ds = AC_inv_dsy;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
-Scalar( 20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+Scalar( 15.0)*(vertex[vertexIdx.x, vertexIdx.y+1, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-1, vertexIdx.z])
-Scalar( 6.0)*(vertex[vertexIdx.x, vertexIdx.y+2, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-2, vertexIdx.z])
+ vertex[vertexIdx.x, vertexIdx.y+3, vertexIdx.z]
+ vertex[vertexIdx.x, vertexIdx.y-3, vertexIdx.z])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y + 1, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 1, vertexIdx.z]) -
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y + 2, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 2, vertexIdx.z]) +
vertex[vertexIdx.x, vertexIdx.y + 3, vertexIdx.z] +
vertex[vertexIdx.x, vertexIdx.y - 3, vertexIdx.z])};
}
Preprocessed Scalar
der6z_upwd(in ScalarField vertex)
{
Scalar inv_ds = DCONST_REAL(AC_inv_dsz);
Scalar inv_ds = AC_inv_dsz;
return (Scalar){ Scalar(1.0/60.0)*inv_ds* (
-Scalar( 20.0)* vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z]
+Scalar( 15.0)*(vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+1]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-1])
-Scalar( 6.0)*(vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+2]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-2])
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z+3]
+ vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z-3])};
return (Scalar){Scalar(1.0 / 60.0) * inv_ds *
(-Scalar(20.0) * vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z] +
Scalar(15.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 1] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 1]) -
Scalar(6.0) * (vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 2] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 2]) +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z + 3] +
vertex[vertexIdx.x, vertexIdx.y, vertexIdx.z - 3])};
}
#endif
@@ -66,9 +66,10 @@ hessian(in ScalarField vertex)
{
Matrix hessian;
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex), derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex),
derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
return hessian;
}

View File

@@ -1,163 +0,0 @@
/*
Copyright (C) 2014-2019, Johannes Pekkilae, Miikka Vaeisalae.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/*
* =============================================================================
* Logical switches
* =============================================================================
*/
#define STENCIL_ORDER (6)
#define NGHOST (STENCIL_ORDER / 2)
#define LDENSITY (1)
#define LHYDRO (1)
#define LMAGNETIC (1)
#define LENTROPY (1)
#define LTEMPERATURE (0)
#define LFORCING (1)
#define LUPWD (1)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
/*
* =============================================================================
* User-defined parameters
* =============================================================================
*/
// clang-format off
#define AC_FOR_USER_INT_PARAM_TYPES(FUNC)\
/* Other */\
FUNC(AC_max_steps), \
FUNC(AC_save_steps), \
FUNC(AC_bin_steps), \
FUNC(AC_bc_type),
#define AC_FOR_USER_INT3_PARAM_TYPES(FUNC)
#define AC_FOR_USER_REAL_PARAM_TYPES(FUNC)\
/* cparams */\
FUNC(AC_dsx), \
FUNC(AC_dsy), \
FUNC(AC_dsz), \
FUNC(AC_dsmin), \
/* physical grid*/\
FUNC(AC_xlen), \
FUNC(AC_ylen), \
FUNC(AC_zlen), \
FUNC(AC_xorig), \
FUNC(AC_yorig), \
FUNC(AC_zorig), \
/*Physical units*/\
FUNC(AC_unit_density),\
FUNC(AC_unit_velocity),\
FUNC(AC_unit_length),\
/* properties of gravitating star*/\
FUNC(AC_star_pos_x),\
FUNC(AC_star_pos_y),\
FUNC(AC_star_pos_z),\
FUNC(AC_M_star),\
/* Run params */\
FUNC(AC_cdt), \
FUNC(AC_cdtv), \
FUNC(AC_cdts), \
FUNC(AC_nu_visc), \
FUNC(AC_cs_sound), \
FUNC(AC_eta), \
FUNC(AC_mu0), \
FUNC(AC_cp_sound), \
FUNC(AC_gamma), \
FUNC(AC_cv_sound), \
FUNC(AC_lnT0), \
FUNC(AC_lnrho0), \
FUNC(AC_zeta), \
FUNC(AC_trans),\
/* Other */\
FUNC(AC_bin_save_t), \
/* Initial condition params */\
FUNC(AC_ampl_lnrho), \
FUNC(AC_ampl_uu), \
FUNC(AC_angl_uu), \
FUNC(AC_lnrho_edge),\
FUNC(AC_lnrho_out),\
/* Forcing parameters. User configured. */\
FUNC(AC_forcing_magnitude),\
FUNC(AC_relhel), \
FUNC(AC_kmin), \
FUNC(AC_kmax), \
/* Forcing parameters. Set by the generator. */\
FUNC(AC_forcing_phase),\
FUNC(AC_k_forcex),\
FUNC(AC_k_forcey),\
FUNC(AC_k_forcez),\
FUNC(AC_kaver),\
FUNC(AC_ff_hel_rex),\
FUNC(AC_ff_hel_rey),\
FUNC(AC_ff_hel_rez),\
FUNC(AC_ff_hel_imx),\
FUNC(AC_ff_hel_imy),\
FUNC(AC_ff_hel_imz),\
/* Additional helper params */\
/* (deduced from other params do not set these directly!) */\
FUNC(AC_G_CONST),\
FUNC(AC_GM_star),\
FUNC(AC_sq2GM_star),\
FUNC(AC_cs2_sound), \
FUNC(AC_inv_dsx), \
FUNC(AC_inv_dsy), \
FUNC(AC_inv_dsz),
#define AC_FOR_USER_REAL3_PARAM_TYPES(FUNC)
// clang-format on
/*
* =============================================================================
* User-defined vertex buffers
* =============================================================================
*/
// clang-format off
#if LENTROPY
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO), \
FUNC(VTXBUF_UUX), \
FUNC(VTXBUF_UUY), \
FUNC(VTXBUF_UUZ), \
FUNC(VTXBUF_AX), \
FUNC(VTXBUF_AY), \
FUNC(VTXBUF_AZ), \
FUNC(VTXBUF_ENTROPY),
#elif LMAGNETIC
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO), \
FUNC(VTXBUF_UUX), \
FUNC(VTXBUF_UUY), \
FUNC(VTXBUF_UUZ), \
FUNC(VTXBUF_AX), \
FUNC(VTXBUF_AY), \
FUNC(VTXBUF_AZ),
#elif LHYDRO
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO), \
FUNC(VTXBUF_UUX), \
FUNC(VTXBUF_UUY), \
FUNC(VTXBUF_UUZ),
#else
#define AC_FOR_VTXBUF_HANDLES(FUNC) \
FUNC(VTXBUF_LNRHO),
#endif
// clang-format on

View File

@@ -0,0 +1,117 @@
#define LDENSITY (1)
#define LHYDRO (1)
#define LMAGNETIC (1)
#define LENTROPY (1)
#define LTEMPERATURE (0)
#define LFORCING (1)
#define LUPWD (1)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
// Int params
uniform int AC_max_steps;
uniform int AC_save_steps;
uniform int AC_bin_steps;
uniform int AC_bc_type;
// Real params
// Spacing
uniform Scalar AC_dsx;
uniform Scalar AC_dsy;
uniform Scalar AC_dsz;
uniform Scalar AC_dsmin;
// physical grid
uniform Scalar AC_xlen;
uniform Scalar AC_ylen;
uniform Scalar AC_zlen;
uniform Scalar AC_xorig;
uniform Scalar AC_yorig;
uniform Scalar AC_zorig;
// Physical units
uniform Scalar AC_unit_density;
uniform Scalar AC_unit_velocity;
uniform Scalar AC_unit_length;
// properties of gravitating star
uniform Scalar AC_star_pos_x;
uniform Scalar AC_star_pos_y;
uniform Scalar AC_star_pos_z;
uniform Scalar AC_M_star;
// Run params
uniform Scalar AC_cdt;
uniform Scalar AC_cdtv;
uniform Scalar AC_cdts;
uniform Scalar AC_nu_visc;
uniform Scalar AC_cs_sound;
uniform Scalar AC_eta;
uniform Scalar AC_mu0;
uniform Scalar AC_cp_sound;
uniform Scalar AC_gamma;
uniform Scalar AC_cv_sound;
uniform Scalar AC_lnT0;
uniform Scalar AC_lnrho0;
uniform Scalar AC_zeta;
uniform Scalar AC_trans;
// Other
uniform Scalar AC_bin_save_t;
// Initial condition params
uniform Scalar AC_ampl_lnrho;
uniform Scalar AC_ampl_uu;
uniform Scalar AC_angl_uu;
uniform Scalar AC_lnrho_edge;
uniform Scalar AC_lnrho_out;
// Forcing parameters. User configured.
uniform Scalar AC_forcing_magnitude;
uniform Scalar AC_relhel;
uniform Scalar AC_kmin;
uniform Scalar AC_kmax;
// Forcing parameters. Set by the generator.
uniform Scalar AC_forcing_phase;
uniform Scalar AC_k_forcex;
uniform Scalar AC_k_forcey;
uniform Scalar AC_k_forcez;
uniform Scalar AC_kaver;
uniform Scalar AC_ff_hel_rex;
uniform Scalar AC_ff_hel_rey;
uniform Scalar AC_ff_hel_rez;
uniform Scalar AC_ff_hel_imx;
uniform Scalar AC_ff_hel_imy;
uniform Scalar AC_ff_hel_imz;
// Additional helper params // (deduced from other params do not set these directly!)
uniform Scalar AC_G_CONST;
uniform Scalar AC_GM_star;
uniform Scalar AC_sq2GM_star;
uniform Scalar AC_cs2_sound;
uniform Scalar AC_inv_dsx;
uniform Scalar AC_inv_dsy;
uniform Scalar AC_inv_dsz;
/*
* =============================================================================
* User-defined vertex buffers
* =============================================================================
*/
#if LENTROPY
uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_UUX;
uniform ScalarField VTXBUF_UUY;
uniform ScalarField VTXBUF_UUZ;
uniform ScalarField VTXBUF_AX;
uniform ScalarField VTXBUF_AY;
uniform ScalarField VTXBUF_AZ;
uniform ScalarField VTXBUF_ENTROPY;
#elif LMAGNETIC
uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_UUX;
uniform ScalarField VTXBUF_UUY;
uniform ScalarField VTXBUF_UUZ;
uniform ScalarField VTXBUF_AX;
uniform ScalarField VTXBUF_AY;
uniform ScalarField VTXBUF_AZ;
#elif LHYDRO
uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_UUX;
uniform ScalarField VTXBUF_UUY;
uniform ScalarField VTXBUF_UUZ;
#else
uniform ScalarField VTXBUF_LNRHO;
#endif

View File

@@ -1,28 +1,4 @@
// Declare uniforms (i.e. device constants)
uniform Scalar cs2_sound;
uniform Scalar nu_visc;
uniform Scalar cp_sound;
uniform Scalar cv_sound;
uniform Scalar mu0;
uniform Scalar eta;
uniform Scalar gamma;
uniform Scalar zeta;
uniform Scalar dsx;
uniform Scalar dsy;
uniform Scalar dsz;
uniform Scalar lnT0;
uniform Scalar lnrho0;
uniform int nx_min;
uniform int ny_min;
uniform int nz_min;
uniform int nx;
uniform int ny;
uniform int nz;
#include "stencil_definition.sdh"
Vector
value(in VectorField uu)
@@ -37,7 +13,7 @@ upwd_der6(in VectorField uu, in ScalarField lnrho)
Scalar uux = fabs(value(uu).x);
Scalar uuy = fabs(value(uu).y);
Scalar uuz = fabs(value(uu).z);
return (Scalar){uux*der6x_upwd(lnrho) + uuy*der6y_upwd(lnrho) + uuz*der6z_upwd(lnrho)};
return (Scalar){uux * der6x_upwd(lnrho) + uuy * der6y_upwd(lnrho) + uuz * der6z_upwd(lnrho)};
}
#endif
@@ -48,10 +24,11 @@ gradients(in VectorField uu)
}
Scalar
continuity(in VectorField uu, in ScalarField lnrho) {
continuity(in VectorField uu, in ScalarField lnrho)
{
return -dot(value(uu), gradient(lnrho))
#if LUPWD
//This is a corrective hyperdiffusion term for upwinding.
// This is a corrective hyperdiffusion term for upwinding.
+ upwd_der6(uu, lnrho)
#endif
- divergence(uu);
@@ -59,133 +36,136 @@ continuity(in VectorField uu, in ScalarField lnrho) {
#if LENTROPY
Vector
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa) {
const Matrix S = stress_tensor(uu);
const Scalar cs2 = cs2_sound * exp(gamma * value(ss) / cp_sound + (gamma - 1) * (value(lnrho) - lnrho0));
const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField ss, in VectorField aa)
{
const Matrix S = stress_tensor(uu);
const Scalar cs2 = AC_cs2_sound * exp(AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - 1) * (value(lnrho) - AC_lnrho0));
const Vector j = (Scalar(1.) / AC_mu0) *
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Vector B = curl(aa);
//TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
// TODO: DOES INTHERMAL VERSTION INCLUDE THE MAGNETIC FIELD?
const Scalar inv_rho = Scalar(1.) / exp(value(lnrho));
// Regex replace CPU constants with get\(AC_([a-zA-Z_0-9]*)\)
// \1
const Vector mom = - mul(gradients(uu), value(uu))
- cs2 * ((Scalar(1.) / cp_sound) * gradient(ss) + gradient(lnrho))
+ inv_rho * cross(j, B)
+ nu_visc * (
laplace_vec(uu)
+ Scalar(1. / 3.) * gradient_of_divergence(uu)
+ Scalar(2.) * mul(S, gradient(lnrho))
)
+ zeta * gradient_of_divergence(uu);
const Vector mom = -mul(gradients(uu), value(uu)) -
cs2 * ((Scalar(1.) / AC_cp_sound) * gradient(ss) + gradient(lnrho)) +
inv_rho * cross(j, B) +
AC_nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu);
return mom;
}
#elif LTEMPERATURE
Vector
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField tt) {
Vector mom;
momentum(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{
Vector mom;
const Matrix S = stress_tensor(uu);
const Matrix S = stress_tensor(uu);
const Vector pressure_term = (cp_sound - cv_sound) * (gradient(tt) + value(tt) * gradient(lnrho));
const Vector pressure_term = (AC_cp_sound - AC_cv_sound) *
(gradient(tt) + value(tt) * gradient(lnrho));
mom = -mul(gradients(uu), value(uu)) -
pressure_term +
nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
mom = -mul(gradients(uu), value(uu)) - pressure_term +
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu);
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
return mom;
return mom;
}
#else
Vector
momentum(in VectorField uu, in ScalarField lnrho) {
Vector mom;
momentum(in VectorField uu, in ScalarField lnrho)
{
Vector mom;
const Matrix S = stress_tensor(uu);
const Matrix S = stress_tensor(uu);
// Isothermal: we have constant speed of sound
mom = -mul(gradients(uu), value(uu)) -
cs2_sound * gradient(lnrho) +
nu_visc *
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
mom = -mul(gradients(uu), value(uu)) - AC_cs2_sound * gradient(lnrho) +
AC_nu_visc * (laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
Scalar(2.) * mul(S, gradient(lnrho))) +
AC_zeta * gradient_of_divergence(uu);
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
#if LGRAVITY
mom = mom - (Vector){0, 0, -10.0};
#endif
return mom;
return mom;
}
#endif
Vector
induction(in VectorField uu, in VectorField aa) {
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
induction(in VectorField uu, in VectorField aa)
{
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
// x A)) in order to avoid taking the first derivative twice (did the math,
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
// u cross B - AC_eta * AC_mu0 * (AC_mu0^-1 * [- laplace A + grad div A ])
const Vector B = curl(aa);
const Vector grad_div = gradient_of_divergence(aa);
const Vector lap = laplace_vec(aa);
// Note, mu0 is cancelled out
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
// Note, AC_mu0 is cancelled out
const Vector ind = cross(value(uu), B) - AC_eta * (grad_div - lap);
return ind;
return ind;
}
#if LENTROPY
Scalar
lnT( in ScalarField ss, in ScalarField lnrho) {
const Scalar lnT = lnT0 + gamma * value(ss) / cp_sound +
(gamma - Scalar(1.)) * (value(lnrho) - lnrho0);
return lnT;
lnT(in ScalarField ss, in ScalarField lnrho)
{
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - Scalar(1.)) * (value(lnrho) - AC_lnrho0);
return lnT;
}
// Nabla dot (K nabla T) / (rho T)
Scalar
heat_conduction( in ScalarField ss, in ScalarField lnrho) {
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
heat_conduction(in ScalarField ss, in ScalarField lnrho)
{
const Scalar inv_AC_cp_sound = AcReal(1.) / AC_cp_sound;
const Vector grad_ln_chi = - gradient(lnrho);
const Vector grad_ln_chi = -gradient(lnrho);
const Scalar first_term = gamma * inv_cp_sound * laplace(ss) +
(gamma - AcReal(1.)) * laplace(lnrho);
const Vector second_term = gamma * inv_cp_sound * gradient(ss) +
(gamma - AcReal(1.)) * gradient(lnrho);
const Vector third_term = gamma * (inv_cp_sound * gradient(ss) +
gradient(lnrho)) + grad_ln_chi;
const Scalar first_term = AC_gamma * inv_AC_cp_sound * laplace(ss) +
(AC_gamma - AcReal(1.)) * laplace(lnrho);
const Vector second_term = AC_gamma * inv_AC_cp_sound * gradient(ss) +
(AC_gamma - AcReal(1.)) * gradient(lnrho);
const Vector third_term = AC_gamma * (inv_AC_cp_sound * gradient(ss) + gradient(lnrho)) +
grad_ln_chi;
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * cp_sound);
return cp_sound * chi * (first_term + dot(second_term, third_term));
const Scalar chi = AC_THERMAL_CONDUCTIVITY / (exp(value(lnrho)) * AC_cp_sound);
return AC_cp_sound * chi * (first_term + dot(second_term, third_term));
}
Scalar
heating(const int i, const int j, const int k) {
return 1;
heating(const int i, const int j, const int k)
{
return 1;
}
Scalar
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa) {
const Matrix S = stress_tensor(uu);
entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorField aa)
{
const Matrix S = stress_tensor(uu);
const Scalar inv_pT = Scalar(1.) / (exp(value(lnrho)) * exp(lnT(ss, lnrho)));
const Vector j = (Scalar(1.) / mu0) * (gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Scalar RHS = H_CONST - C_CONST
+ eta * (mu0) * dot(j, j)
+ Scalar(2.) * exp(value(lnrho)) * nu_visc * contract(S)
+ zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
const Vector j = (Scalar(1.) / AC_mu0) *
(gradient_of_divergence(aa) - laplace_vec(aa)); // Current density
const Scalar RHS = H_CONST - C_CONST + AC_eta * (AC_mu0)*dot(j, j) +
Scalar(2.) * exp(value(lnrho)) * AC_nu_visc * contract(S) +
AC_zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu);
return - dot(value(uu), gradient(ss))
+ inv_pT * RHS
+ heat_conduction(ss, lnrho);
return -dot(value(uu), gradient(ss)) + inv_pT * RHS + heat_conduction(ss, lnrho);
}
#endif
@@ -193,14 +173,15 @@ entropy(in ScalarField ss, in VectorField uu, in ScalarField lnrho, in VectorFie
Scalar
heat_transfer(in VectorField uu, in ScalarField lnrho, in ScalarField tt)
{
const Matrix S = stress_tensor(uu);
const Scalar heat_diffusivity_k = 0.0008; //8e-4;
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) + heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) + nu_visc * contract(S) * (Scalar(1.) / cv_sound) - (gamma - 1) * value(tt) * divergence(uu);
const Matrix S = stress_tensor(uu);
const Scalar heat_diffusivity_k = 0.0008; // 8e-4;
return -dot(value(uu), gradient(tt)) + heat_diffusivity_k * laplace(tt) +
heat_diffusivity_k * dot(gradient(lnrho), gradient(tt)) +
AC_nu_visc * contract(S) * (Scalar(1.) / AC_cv_sound) -
(AC_gamma - 1) * value(tt) * divergence(uu);
}
#endif
#if LFORCING
Vector
simple_vortex_forcing(Vector a, Vector b, Scalar magnitude)
@@ -214,13 +195,13 @@ simple_outward_flow_forcing(Vector a, Vector b, Scalar magnitude)
return magnitude * (1 / length(b - a)) * normalized(b - a); // Outward flow
}
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable helicity
// The Pencil Code forcing_hel_noshear(), manual Eq. 222, inspired forcing function with adjustable
// helicity
Vector
helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vector ff_im, Scalar phi)
{
// JP: This looks wrong:
// 1) Should it be dsx * nx instead of dsx * ny?
// 1) Should it be AC_dsx * AC_nx instead of AC_dsx * AC_ny?
// 2) Should you also use globalGrid.n instead of the local n?
// MV: You are rigth. Made a quickfix. I did not see the error because multigpu is split
// in z direction not y direction.
@@ -229,24 +210,23 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
// MV: Good idea. No an immediate priority.
// Fun related article:
// https://randomascii.wordpress.com/2014/10/09/intel-underestimates-error-bounds-by-1-3-quintillion/
xx.x = xx.x*(2.0*M_PI/(dsx*globalGridN.x));
xx.y = xx.y*(2.0*M_PI/(dsy*globalGridN.y));
xx.z = xx.z*(2.0*M_PI/(dsz*globalGridN.z));
xx.x = xx.x * (2.0 * M_PI / (AC_dsx * globalGridN.x));
xx.y = xx.y * (2.0 * M_PI / (AC_dsy * globalGridN.y));
xx.z = xx.z * (2.0 * M_PI / (AC_dsz * globalGridN.z));
Scalar cos_phi = cos(phi);
Scalar sin_phi = sin(phi);
Scalar cos_k_dot_x = cos(dot(k_force, xx));
Scalar sin_k_dot_x = sin(dot(k_force, xx));
Scalar cos_phi = cos(phi);
Scalar sin_phi = sin(phi);
Scalar cos_k_dot_x = cos(dot(k_force, xx));
Scalar sin_k_dot_x = sin(dot(k_force, xx));
// Phase affect only the x-component
//Scalar real_comp = cos_k_dot_x;
//Scalar imag_comp = sin_k_dot_x;
Scalar real_comp_phase = cos_k_dot_x*cos_phi - sin_k_dot_x*sin_phi;
Scalar imag_comp_phase = cos_k_dot_x*sin_phi + sin_k_dot_x*cos_phi;
// Scalar real_comp = cos_k_dot_x;
// Scalar imag_comp = sin_k_dot_x;
Scalar real_comp_phase = cos_k_dot_x * cos_phi - sin_k_dot_x * sin_phi;
Scalar imag_comp_phase = cos_k_dot_x * sin_phi + sin_k_dot_x * cos_phi;
Vector force = (Vector){ ff_re.x*real_comp_phase - ff_im.x*imag_comp_phase,
ff_re.y*real_comp_phase - ff_im.y*imag_comp_phase,
ff_re.z*real_comp_phase - ff_im.z*imag_comp_phase};
Vector force = (Vector){ff_re.x * real_comp_phase - ff_im.x * imag_comp_phase,
ff_re.y * real_comp_phase - ff_im.y * imag_comp_phase,
ff_re.z * real_comp_phase - ff_im.z * imag_comp_phase};
return force;
}
@@ -254,37 +234,39 @@ helical_forcing(Scalar magnitude, Vector k_force, Vector xx, Vector ff_re, Vecto
Vector
forcing(int3 globalVertexIdx, Scalar dt)
{
Vector a = Scalar(.5) * (Vector){globalGridN.x * dsx,
globalGridN.y * dsy,
globalGridN.z * dsz}; // source (origin)
Vector xx = (Vector){(globalVertexIdx.x - nx_min) * dsx,
(globalVertexIdx.y - ny_min) * dsy,
(globalVertexIdx.z - nz_min) * dsz}; // sink (current index)
const Scalar cs2 = cs2_sound;
const Scalar cs = sqrt(cs2);
Vector a = Scalar(.5) * (Vector){globalGridN.x * AC_dsx, globalGridN.y * AC_dsy,
globalGridN.z * AC_dsz}; // source (origin)
Vector xx = (Vector){(globalVertexIdx.x - DCONST(AC_nx_min)) * AC_dsx,
(globalVertexIdx.y - DCONST(AC_ny_min)) * AC_dsy,
(globalVertexIdx.z - DCONST(AC_nz_min)) * AC_dsz}; // sink (current index)
const Scalar cs2 = AC_cs2_sound;
const Scalar cs = sqrt(cs2);
//Placeholders until determined properly
Scalar magnitude = DCONST_REAL(AC_forcing_magnitude);
Scalar phase = DCONST_REAL(AC_forcing_phase);
Vector k_force = (Vector){ DCONST_REAL(AC_k_forcex), DCONST_REAL(AC_k_forcey), DCONST_REAL(AC_k_forcez)};
Vector ff_re = (Vector){DCONST_REAL(AC_ff_hel_rex), DCONST_REAL(AC_ff_hel_rey), DCONST_REAL(AC_ff_hel_rez)};
Vector ff_im = (Vector){DCONST_REAL(AC_ff_hel_imx), DCONST_REAL(AC_ff_hel_imy), DCONST_REAL(AC_ff_hel_imz)};
// Placeholders until determined properly
Scalar magnitude = AC_forcing_magnitude;
Scalar phase = AC_forcing_phase;
Vector k_force = (Vector){AC_k_forcex, AC_k_forcey, AC_k_forcez};
Vector ff_re = (Vector){AC_ff_hel_rex, AC_ff_hel_rey, AC_ff_hel_rez};
Vector ff_im = (Vector){AC_ff_hel_imx, AC_ff_hel_imy, AC_ff_hel_imz};
// Determine that forcing funtion type at this point.
// Vector force = simple_vortex_forcing(a, xx, magnitude);
// Vector force = simple_outward_flow_forcing(a, xx, magnitude);
Vector force = helical_forcing(magnitude, k_force, xx, ff_re, ff_im, phase);
//Determine that forcing funtion type at this point.
//Vector force = simple_vortex_forcing(a, xx, magnitude);
//Vector force = simple_outward_flow_forcing(a, xx, magnitude);
Vector force = helical_forcing(magnitude, k_force, xx, ff_re,ff_im, phase);
// Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
const Scalar NN = cs * sqrt(AC_kaver * cs);
// MV: Like in the Pencil Code. I don't understandf the logic here.
force.x = sqrt(dt) * NN * force.x;
force.y = sqrt(dt) * NN * force.y;
force.z = sqrt(dt) * NN * force.z;
//Scaling N = magnitude*cs*sqrt(k*cs/dt) * dt
const Scalar NN = cs*sqrt(DCONST_REAL(AC_kaver)*cs);
//MV: Like in the Pencil Code. I don't understandf the logic here.
force.x = sqrt(dt)*NN*force.x;
force.y = sqrt(dt)*NN*force.y;
force.z = sqrt(dt)*NN*force.z;
if (is_valid(force)) { return force; }
else { return (Vector){0, 0, 0}; }
if (is_valid(force)) {
return force;
}
else {
return (Vector){0, 0, 0};
}
}
#endif // LFORCING
@@ -294,12 +276,11 @@ in ScalarField lnrho(VTXBUF_LNRHO);
out ScalarField out_lnrho(VTXBUF_LNRHO);
in VectorField uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
out VectorField out_uu(VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ);
out VectorField out_uu(VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
#if LMAGNETIC
in VectorField aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
out VectorField out_aa(VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ);
in VectorField aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
out VectorField out_aa(VTXBUF_AX, VTXBUF_AY, VTXBUF_AZ);
#endif
#if LENTROPY
@@ -313,26 +294,27 @@ out ScalarField out_tt(VTXBUF_TEMPERATURE);
#endif
Kernel void
solve(Scalar dt) {
solve(Scalar dt)
{
out_lnrho = rk3(out_lnrho, lnrho, continuity(uu, lnrho), dt);
#if LMAGNETIC
#if LMAGNETIC
out_aa = rk3(out_aa, aa, induction(uu, aa), dt);
#endif
#endif
#if LENTROPY
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt);
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
#elif LTEMPERATURE
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, tt), dt);
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
#else
out_uu = rk3(out_uu, uu, momentum(uu, lnrho), dt);
#endif
#if LENTROPY
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, ss, aa), dt);
out_ss = rk3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt);
#elif LTEMPERATURE
out_uu = rk3(out_uu, uu, momentum(uu, lnrho, tt), dt);
out_tt = rk3(out_tt, tt, heat_transfer(uu, lnrho, tt), dt);
#else
out_uu = rk3(out_uu, uu, momentum(uu, lnrho), dt);
#endif
#if LFORCING
#if LFORCING
if (step_number == 2) {
out_uu = out_uu + forcing(globalVertexIdx, dt);
}
#endif
#endif
}

View File

@@ -15,7 +15,7 @@ L [a-zA-Z_]
"void" { return VOID; } /* Rest of the types inherited from C */
"int" { return INT; }
"int3" { return INT3; }
"ScalarField" { return SCALAR; }
"ScalarField" { return SCALARFIELD; }
"VectorField" { return VECTOR; }
"Kernel" { return KERNEL; } /* Function specifiers */

View File

@@ -16,7 +16,7 @@ int yyget_lineno();
%token CONSTANT IN OUT UNIFORM
%token IDENTIFIER NUMBER
%token RETURN
%token SCALAR VECTOR MATRIX
%token SCALAR VECTOR MATRIX SCALARFIELD
%token VOID INT INT3
%token IF ELSE FOR WHILE ELIF
%token LEQU LAND LOR LLEQU
@@ -209,6 +209,7 @@ type_specifier: VOID
| SCALAR { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = SCALAR; }
| VECTOR { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = VECTOR; }
| MATRIX { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = MATRIX; }
| SCALARFIELD { $$ = astnode_create(NODE_TYPE_SPECIFIER, NULL, NULL); $$->token = SCALARFIELD; }
;
identifier: IDENTIFIER { $$ = astnode_create(NODE_IDENTIFIER, NULL, NULL); astnode_set_buffer(yytext, $$); }

View File

@@ -54,12 +54,13 @@ static const char* translation_table[TRANSLATION_TABLE_SIZE] = {
[WHILE] = "while",
[FOR] = "for",
// Type specifiers
[VOID] = "void",
[INT] = "int",
[INT3] = "int3",
[SCALAR] = "AcReal",
[VECTOR] = "AcReal3",
[MATRIX] = "AcMatrix",
[VOID] = "void",
[INT] = "int",
[INT3] = "int3",
[SCALAR] = "AcReal",
[VECTOR] = "AcReal3",
[MATRIX] = "AcMatrix",
[SCALARFIELD] = "AcReal",
// Type qualifiers
[KERNEL] = "template <int step_number> static "
"__global__", //__launch_bounds__(RK_THREADBLOCK_SIZE,
@@ -228,14 +229,18 @@ translate_latest_symbol(void)
}
// UNIFORM
else if (symbol->type_qualifier == UNIFORM) {
// if (compilation_type != STENCIL_HEADER) {
// printf("ERROR: %s can only be used in stencil headers\n", translation_table[UNIFORM]);
//}
/* Do nothing */
}
// IN / OUT
else if (symbol->type != SYMBOLTYPE_FUNCTION_PARAMETER &&
(symbol->type_qualifier == IN || symbol->type_qualifier == OUT)) {
printf("static __device__ const %s %s%s", symbol->type_specifier == SCALAR ? "int" : "int3",
inout_name_prefix, symbol_table[handle].identifier);
printf("static __device__ const %s %s%s",
symbol->type_specifier == SCALARFIELD ? "int" : "int3", inout_name_prefix,
symbol_table[handle].identifier);
if (symbol->type_specifier == VECTOR)
printf(" = make_int3");
}
@@ -373,6 +378,8 @@ traverse(const ASTNode* node)
// printf("%s%s", inout_name_prefix, symbol->identifier);
//}
if (symbol->type_qualifier == UNIFORM) {
printf("DCONST(%s) ", symbol->identifier);
/*
if (symbol->type_specifier == SCALAR)
printf("DCONST_REAL(AC_%s) ", symbol->identifier);
else if (symbol->type_specifier == INT)
@@ -380,6 +387,7 @@ traverse(const ASTNode* node)
else
printf("INVALID UNIFORM type specifier %s with %s\n",
translate(symbol->type_specifier), symbol->identifier);
*/
}
else {
// Do a regular translation
@@ -549,6 +557,68 @@ generate_preprocessed_structures(void)
");
}
static void
generate_header(void)
{
printf("\n#pragma once\n");
// Int params
printf("#define AC_FOR_USER_INT_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == INT) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Int3 params
printf("#define AC_FOR_USER_INT3_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == INT3) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Scalar params
printf("#define AC_FOR_USER_REAL_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == SCALAR) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Vector params
printf("#define AC_FOR_USER_REAL3_PARAM_TYPES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == VECTOR) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
// Scalar fields
printf("#define AC_FOR_VTXBUF_HANDLES(FUNC)");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_specifier == SCALARFIELD) {
printf("\\\nFUNC(%s),", symbol_table[i].identifier);
}
}
printf("\n\n");
/*
printf("\n");
printf("typedef struct {\n");
for (int i = 0; i < num_symbols; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
printf("%s %s;\n", translate(symbol_table[i].type_specifier),
symbol_table[i].identifier);
}
printf("} %sData;\n", translate(SCALAR));
*/
}
int
main(int argc, char** argv)
{
@@ -557,7 +627,7 @@ main(int argc, char** argv)
compilation_type = STENCIL_ASSEMBLY;
else if (!strcmp(argv[1], "-sps"))
compilation_type = STENCIL_PROCESS;
else if (!strcmp(argv[1], "-hh"))
else if (!strcmp(argv[1], "-sdh"))
compilation_type = STENCIL_HEADER;
else
printf("Unknown flag %s. Generating stencil assembly.\n", argv[1]);
@@ -584,6 +654,8 @@ main(int argc, char** argv)
traverse(root);
if (compilation_type == STENCIL_ASSEMBLY)
generate_preprocessed_structures();
else if (compilation_type == STENCIL_HEADER)
generate_header();
// print_symbol_table();

View File

@@ -45,6 +45,8 @@ typedef struct {
#endif // __CUDACC__
// Library flags
#define STENCIL_ORDER (6)
#define NGHOST (STENCIL_ORDER / 2)
#define VERBOSE_PRINTING (1)
// Built-in types and parameters

View File

@@ -8,17 +8,18 @@ fi
KERNEL_DIR=${AC_HOME}"/src/core/kernels"
ACC_DIR=${AC_HOME}"/acc"
ACC_DEFAULT_HEADER="mhd_solver/stencil_defines.h"
ACC_DEFAULT_SAS="mhd_solver/stencil_assembly.sas"
ACC_DEFAULT_SPS="mhd_solver/stencil_process.sps"
ACC_DEFAULT_HEADER="mhd_solver/stencil_definition.sdh"
ACC_DEFAULT_INCLUDE_DIR="mhd_solver"
${ACC_DIR}/clean.sh
${ACC_DIR}/build_acc.sh
ACC_HEADER=${ACC_DEFAULT_HEADER}
ACC_SAS=${ACC_DEFAULT_SAS}
ACC_SPS=${ACC_DEFAULT_SPS}
ACC_HEADER=${ACC_DEFAULT_HEADER}
ACC_INCLUDE_DIR=${ACC_DEFAULT_INCLUDE_DIR}
while [ "$#" -gt 0 ]
do
@@ -56,9 +57,17 @@ echo "Header file:" ${ACC_DIR}/${ACC_HEADER}
echo "Assembly file: ${ACC_DIR}/${ACC_SAS}"
echo "Process file: ${ACC_DIR}/${ACC_SPS}"
cd ${KERNEL_DIR}
${ACC_DIR}/compile.sh ${ACC_DIR}/${ACC_SAS} ${ACC_DIR}/${ACC_HEADER}
${ACC_DIR}/compile.sh ${ACC_DIR}/${ACC_SPS} ${ACC_DIR}/${ACC_HEADER}
cd ${ACC_DIR}/${ACC_INCLUDE_DIR}
echo ${PWD}
${ACC_DIR}/compile.sh ${ACC_DIR}/${ACC_SAS}
${ACC_DIR}/compile.sh ${ACC_DIR}/${ACC_SPS}
${ACC_DIR}/compile.sh ${ACC_DIR}/${ACC_HEADER}
echo "Linking: " ${ACC_DIR}/${ACC_HEADER} " -> " ${AC_HOME}/include/stencil_defines.h
ln -sf ${ACC_DIR}/${ACC_HEADER} ${AC_HOME}/include/stencil_defines.h
echo "Moving stencil_assembly.cuh -> ${AC_HOME}/src/core/kernels"
mv stencil_assembly.cuh ${AC_HOME}/src/core/kernels
echo "Moving stencil_process.cuh -> ${AC_HOME}/src/core/kernels"
mv stencil_process.cuh ${AC_HOME}/src/core/kernels
echo "Moving stencil_defines.cuh -> ${AC_HOME}/include"
mv stencil_defines.h ${AC_HOME}/include

View File

@@ -40,26 +40,31 @@ typedef struct {
} VertexBufferArray;
__constant__ AcMeshInfo d_mesh_info;
static inline int __device__
static int __device__ __forceinline__
DCONST(const AcIntParam param)
{
return d_mesh_info.int_params[param];
}
static inline int3 __device__
static int3 __device__ __forceinline__
DCONST(const AcInt3Param param)
{
return d_mesh_info.int3_params[param];
}
static inline AcReal __device__
static AcReal __device__ __forceinline__
DCONST(const AcRealParam param)
{
return d_mesh_info.real_params[param];
}
static inline AcReal3 __device__
static AcReal3 __device__ __forceinline__
DCONST(const AcReal3Param param)
{
return d_mesh_info.real3_params[param];
}
constexpr VertexBufferHandle
DCONST(const VertexBufferHandle handle)
{
return handle;
}
#define DCONST_INT(x) DCONST(x)
#define DCONST_INT3(x) DCONST(x)
#define DCONST_REAL(x) DCONST(x)
@@ -103,7 +108,7 @@ struct device_s {
};
// clang-format off
static __global__ void dummy_kernel(void) {}
static __global__ void dummy_kernel(void) { DCONST((AcIntParam)0); DCONST((AcInt3Param)0); DCONST((AcRealParam)0); DCONST((AcReal3Param)0); }
// clang-format on
AcResult

View File

@@ -8,5 +8,5 @@ set(CMAKE_C_STANDARD_REQUIRED ON)
find_package(MPI REQUIRED)
add_executable(mpitest main.c)
target_include_directories(mpitest PRIVATE ${MPI_C_INCLUDE_PATH})
target_link_libraries(mpitest PRIVATE ${MPI_C_LIBRARIES} astaroth_core)
target_include_directories(mpitest PRIVATE ${CMAKE_SOURCE_DIR}/src/standalone ${MPI_C_INCLUDE_PATH})
target_link_libraries(mpitest astaroth_core astaroth_standalone ${MPI_C_LIBRARIES})

View File

@@ -16,13 +16,120 @@
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
/**
Running: mpirun -np <num processes> <executable>
*/
#undef NDEBUG // Assert always
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "astaroth.h"
#include "autotest.h"
#include <mpi.h>
// From Astaroth Standalone
#include "config_loader.h"
#include "model/host_memory.h"
static void
distribute_mesh(const AcMesh* src, AcMesh* dst)
{
MPI_Datatype datatype = MPI_FLOAT;
if (sizeof(AcReal) == 8)
datatype = MPI_DOUBLE;
int process_id, num_processes;
MPI_Comm_rank(MPI_COMM_WORLD, &process_id);
MPI_Comm_size(MPI_COMM_WORLD, &num_processes);
const size_t count = acVertexBufferSize(dst->info);
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
// Communicate to self
if (process_id == 0) {
assert(src);
assert(dst);
memcpy(&dst->vertex_buffer[i][0], //
&src->vertex_buffer[i][0], //
count * sizeof(src->vertex_buffer[i][0]));
}
// Communicate to others
for (int j = 1; j < num_processes; ++j) {
if (process_id == 0) {
assert(src);
// Send
// TODO RECHECK THESE j INDICES
const size_t src_idx = j * dst->info.int_params[AC_mx] *
dst->info.int_params[AC_my] * src->info.int_params[AC_nz] /
num_processes;
MPI_Send(&src->vertex_buffer[i][src_idx], count, datatype, j, 0, MPI_COMM_WORLD);
}
else {
assert(dst);
// Recv
const size_t dst_idx = 0;
MPI_Status status;
MPI_Recv(&dst->vertex_buffer[i][dst_idx], count, datatype, 0, 0, MPI_COMM_WORLD,
&status);
}
}
}
}
static void
gather_mesh(const AcMesh* src, AcMesh* dst)
{
MPI_Datatype datatype = MPI_FLOAT;
if (sizeof(AcReal) == 8)
datatype = MPI_DOUBLE;
int process_id, num_processes;
MPI_Comm_rank(MPI_COMM_WORLD, &process_id);
MPI_Comm_size(MPI_COMM_WORLD, &num_processes);
size_t count = acVertexBufferSize(src->info);
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
// Communicate to self
if (process_id == 0) {
assert(src);
assert(dst);
memcpy(&dst->vertex_buffer[i][0], //
&src->vertex_buffer[i][0], //
count * sizeof(AcReal));
}
// Communicate to others
for (int j = 1; j < num_processes; ++j) {
if (process_id == 0) {
// Recv
// const size_t dst_idx = j * acVertexBufferCompdomainSize(dst->info);
const size_t dst_idx = j * dst->info.int_params[AC_mx] *
dst->info.int_params[AC_my] * dst->info.int_params[AC_nz] /
num_processes;
assert(dst_idx + count <= acVertexBufferSize(dst->info));
MPI_Status status;
MPI_Recv(&dst->vertex_buffer[i][dst_idx], count, datatype, j, 0, MPI_COMM_WORLD,
&status);
}
else {
// Send
const size_t src_idx = 0;
assert(src_idx + count <= acVertexBufferSize(src->info));
MPI_Send(&src->vertex_buffer[i][src_idx], count, datatype, 0, 0, MPI_COMM_WORLD);
}
}
}
}
int
main(void)
{
@@ -37,14 +144,39 @@ main(void)
MPI_Get_processor_name(processor_name, &name_len);
printf("Processor %s. Process %d of %d.\n", processor_name, process_id, num_processes);
AcMeshInfo info = {
.int_params[AC_nx] = 128,
.int_params[AC_ny] = 64,
.int_params[AC_nz] = 32,
};
acInit(info);
acIntegrate(0.1f);
acQuit();
AcMeshInfo mesh_info;
load_config(&mesh_info);
update_config(&mesh_info);
AcMesh* main_mesh = NULL;
ModelMesh* model_mesh = NULL;
if (process_id == 0) {
main_mesh = acmesh_create(mesh_info);
acmesh_init_to(INIT_TYPE_RANDOM, main_mesh);
model_mesh = modelmesh_create(mesh_info);
acmesh_to_modelmesh(*main_mesh, model_mesh);
}
AcMeshInfo submesh_info = mesh_info;
submesh_info.int_params[AC_nz] /= num_processes;
update_config(&submesh_info);
AcMesh* submesh = acmesh_create(submesh_info);
/////////////////////
distribute_mesh(main_mesh, submesh);
gather_mesh(submesh, main_mesh);
/////////////////////////
// Autotest
bool is_acceptable = verify_meshes(*model_mesh, *main_mesh);
/////
acmesh_destroy(submesh);
if (process_id == 0) {
modelmesh_destroy(model_mesh);
acmesh_destroy(main_mesh);
}
MPI_Finalize();
return EXIT_SUCCESS;

View File

@@ -25,10 +25,11 @@ add_compile_options(-pipe ${OpenMP_CXX_FLAGS})
add_compile_options(-Wall -Wextra -Werror -Wdouble-promotion -Wfloat-conversion)# -Wshadow)
## Compile and link
add_library(astaroth_standalone ${SOURCES})
add_library(astaroth_standalone STATIC ${SOURCES})
target_link_libraries(astaroth_standalone PRIVATE astaroth_core "${OpenMP_CXX_FLAGS}" ${SDL2_LIBRARY})
add_executable(ac_run main.cc)
target_link_libraries(ac_run PRIVATE astaroth_standalone astaroth_core "${OpenMP_CXX_FLAGS}" ${SDL2_LIBRARY})
target_link_libraries(ac_run PRIVATE astaroth_standalone)
# Define the config directory
if (ALTER_CONF)

View File

@@ -31,6 +31,16 @@
#include "host_memory.h"
#include "model_boundconds.h"
// Standalone flags
#define LDENSITY (1)
#define LHYDRO (1)
#define LMAGNETIC (1)
#define LENTROPY (1)
#define LTEMPERATURE (0)
#define LFORCING (1)
#define LUPWD (1)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
typedef struct {
ModelScalar x, y, z;
} ModelVector;