Rewrote the Astaroth DSL compiler. More information and cleanup in the next commits.

This commit is contained in:
jpekkila
2019-10-07 15:43:20 +03:00
parent 6665d30983
commit d97f5b59ba
5 changed files with 389 additions and 91 deletions

View File

@@ -1,3 +1,5 @@
#include <stdderiv.h>
#define LDENSITY (1) #define LDENSITY (1)
#define LHYDRO (1) #define LHYDRO (1)
#define LMAGNETIC (1) #define LMAGNETIC (1)
@@ -8,6 +10,8 @@
#define LSINK (0) #define LSINK (0)
#define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter #define AC_THERMAL_CONDUCTIVITY (AcReal(0.001)) // TODO: make an actual config parameter
#define H_CONST (0) // TODO: make an actual config parameter
#define C_CONST (0) // TODO: make an actual config parameter
// Int params // Int params
uniform int AC_max_steps; uniform int AC_max_steps;
@@ -20,9 +24,6 @@ uniform int AC_start_step;
uniform Scalar AC_dt; uniform Scalar AC_dt;
uniform Scalar AC_max_time; uniform Scalar AC_max_time;
// Spacing // Spacing
uniform Scalar AC_dsx;
uniform Scalar AC_dsy;
uniform Scalar AC_dsz;
uniform Scalar AC_dsmin; uniform Scalar AC_dsmin;
// physical grid // physical grid
uniform Scalar AC_xlen; uniform Scalar AC_xlen;
@@ -96,9 +97,6 @@ uniform Scalar AC_GM_star;
uniform Scalar AC_unit_mass; uniform Scalar AC_unit_mass;
uniform Scalar AC_sq2GM_star; uniform Scalar AC_sq2GM_star;
uniform Scalar AC_cs2_sound; uniform Scalar AC_cs2_sound;
uniform Scalar AC_inv_dsx;
uniform Scalar AC_inv_dsy;
uniform Scalar AC_inv_dsz;
/* /*
* ============================================================================= * =============================================================================
@@ -135,19 +133,6 @@ uniform ScalarField VTXBUF_LNRHO;
uniform ScalarField VTXBUF_ACCRETION; uniform ScalarField VTXBUF_ACCRETION;
#endif #endif
Preprocessed Scalar
value(in ScalarField vertex)
{
return vertex[vertexIdx];
}
Preprocessed Vector
gradient(in ScalarField vertex)
{
return (Vector){derx(vertexIdx, vertex), dery(vertexIdx, vertex), derz(vertexIdx, vertex)};
}
#if LUPWD #if LUPWD
Preprocessed Scalar Preprocessed Scalar
@@ -197,24 +182,6 @@ der6z_upwd(in ScalarField vertex)
#endif #endif
Preprocessed Matrix
hessian(in ScalarField vertex)
{
Matrix hessian;
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex),
derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)};
return hessian;
}
Device Vector
value(in VectorField uu)
{
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
}
#if LUPWD #if LUPWD
Device Scalar Device Scalar
@@ -492,9 +459,8 @@ induction(in VectorField uu, in VectorField aa)
Device Scalar Device Scalar
lnT(in ScalarField ss, in ScalarField lnrho) lnT(in ScalarField ss, in ScalarField lnrho)
{ {
const Scalar lnT = AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound + return AC_lnT0 + AC_gamma * value(ss) / AC_cp_sound +
(AC_gamma - Scalar(1.0)) * (value(lnrho) - AC_lnrho0); (AC_gamma - Scalar(1.0)) * (value(lnrho) - AC_lnrho0);
return lnT;
} }
// Nabla dot (K nabla T) / (rho T) // Nabla dot (K nabla T) / (rho T)

View File

@@ -80,8 +80,8 @@ else_selection_statement: compound_statement
elif_selection_statement: ELIF expression else_selection_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = ELIF; } elif_selection_statement: ELIF expression else_selection_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = ELIF; }
; ;
iteration_statement: WHILE expression compound_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = WHILE; } iteration_statement: WHILE expression compound_statement { $$ = astnode_create(NODE_ITERATION_STATEMENT, $2, $3); $$->prefix = WHILE; }
| FOR for_expression compound_statement { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = FOR; } | FOR for_expression compound_statement { $$ = astnode_create(NODE_ITERATION_STATEMENT, $2, $3); $$->prefix = FOR; }
; ;
for_expression: '(' for_init_param for_other_params ')' { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = '('; $$->postfix = ')'; } for_expression: '(' for_init_param for_other_params ')' { $$ = astnode_create(NODE_UNKNOWN, $2, $3); $$->prefix = '('; $$->postfix = ')'; }
@@ -124,8 +124,8 @@ declaration: type_declaration identifier
| type_declaration array_declaration { $$ = astnode_create(NODE_DECLARATION, $1, $2); } | type_declaration array_declaration { $$ = astnode_create(NODE_DECLARATION, $1, $2); }
; ;
array_declaration: identifier '[' ']' { $$ = astnode_create(NODE_UNKNOWN, $1, NULL); $$->infix = '['; $$->postfix = ']'; } array_declaration: identifier '[' ']' { $$ = astnode_create(NODE_ARRAY_DECLARATION, $1, NULL); $$->infix = '['; $$->postfix = ']'; }
| identifier '[' expression ']' { $$ = astnode_create(NODE_UNKNOWN, $1, $3); $$->infix = '['; $$->postfix = ']'; } | identifier '[' expression ']' { $$ = astnode_create(NODE_ARRAY_DECLARATION, $1, $3); $$->infix = '['; $$->postfix = ']'; }
; ;
type_declaration: type_specifier { $$ = astnode_create(NODE_TYPE_DECLARATION, $1, NULL); } type_declaration: type_specifier { $$ = astnode_create(NODE_TYPE_DECLARATION, $1, NULL); }

View File

@@ -20,8 +20,10 @@
FUNC(NODE_UNKNOWN), \ FUNC(NODE_UNKNOWN), \
FUNC(NODE_DEFINITION), \ FUNC(NODE_DEFINITION), \
FUNC(NODE_GLOBAL_DEFINITION), \ FUNC(NODE_GLOBAL_DEFINITION), \
FUNC(NODE_ITERATION_STATEMENT), \
FUNC(NODE_DECLARATION), \ FUNC(NODE_DECLARATION), \
FUNC(NODE_DECLARATION_LIST), \ FUNC(NODE_DECLARATION_LIST), \
FUNC(NODE_ARRAY_DECLARATION), \
FUNC(NODE_TYPE_DECLARATION), \ FUNC(NODE_TYPE_DECLARATION), \
FUNC(NODE_TYPE_QUALIFIER), \ FUNC(NODE_TYPE_QUALIFIER), \
FUNC(NODE_TYPE_SPECIFIER), \ FUNC(NODE_TYPE_SPECIFIER), \

View File

@@ -153,6 +153,13 @@ add_symbol(const SymbolType type, const int tqualifier, const int tspecifier, co
{ {
assert(num_symbols[current_nest] < SYMBOL_TABLE_SIZE); assert(num_symbols[current_nest] < SYMBOL_TABLE_SIZE);
if (symboltable_lookup(id) && type != SYMBOLTYPE_FUNCTION) {
fprintf(stderr,
"Syntax error. Symbol '%s' is ambiguous, declared multiple times in the same scope"
" (shadowing).\n",
id);
}
symbol_table[num_symbols[current_nest]].type = type; symbol_table[num_symbols[current_nest]].type = type;
symbol_table[num_symbols[current_nest]].type_qualifier = tqualifier; symbol_table[num_symbols[current_nest]].type_qualifier = tqualifier;
symbol_table[num_symbols[current_nest]].type_specifier = tspecifier; symbol_table[num_symbols[current_nest]].type_specifier = tspecifier;
@@ -222,73 +229,107 @@ print_symbol_table(void)
* Traversal state * Traversal state
* ============================================================================= * =============================================================================
*/ */
static bool inside_declaration = false;
/* /*
* ============================================================================= * =============================================================================
* AST traversal * AST traversal
* ============================================================================= * =============================================================================
*/ */
/*
static bool
introspect(const ASTNode* node, const NodeType type)
{
assert(node);
ASTNode* parent = node->parent;
while (parent) {
if (parent->type == type)
return true;
else
parent = parent->parent;
}
return false;
}
*/
static void static void
traverse(const ASTNode* node) traverse(const ASTNode* node)
{ {
// Prefix translation // Prefix translation
if (translate(node->prefix)) if (!inside_declaration && translate(node->prefix))
fprintf(CUDAHEADER, "%s", translate(node->prefix)); fprintf(CUDAHEADER, "%s", translate(node->prefix));
// Prefix logic // Prefix logic
if (node->type == NODE_COMPOUND_STATEMENT) { if (node->type == NODE_COMPOUND_STATEMENT) {
// if (node->type == NODE_FUNCTION_PARAMETER_DECLARATION ||
// node->type == NODE_ITERATION_STATEMENT) {
assert(current_nest < MAX_NESTS); assert(current_nest < MAX_NESTS);
++current_nest; ++current_nest;
num_symbols[current_nest] = num_symbols[current_nest - 1]; num_symbols[current_nest] = num_symbols[current_nest - 1];
} }
if (node->type == NODE_DECLARATION)
inside_declaration = true;
if (node->type == NODE_FUNCTION_PARAMETER_DECLARATION) {
// Boilerplates
const ASTNode* typedecl = node->parent->lhs->lhs;
const ASTNode* typequal = typedecl->lhs;
printf("typedecl %d\n", typedecl->type);
assert(typedecl->type == NODE_TYPE_DECLARATION);
if (typequal->type == NODE_TYPE_QUALIFIER) {
if (typequal->token == KERNEL) {
fprintf(CUDAHEADER, "GEN_KERNEL_PARAM_BOILERPLATE");
if (node->lhs != NULL) {
fprintf(
stderr,
"Syntax error: function parameters for Kernel functions not allowed!\n");
}
}
else if (typequal->token == PREPROCESSED) {
fprintf(CUDAHEADER, "GEN_PREPROCESSED_PARAM_BOILERPLATE, ");
}
}
}
if (node->type == NODE_COMPOUND_STATEMENT) {
if (node->parent->type == NODE_FUNCTION_DEFINITION) {
const Symbol* symbol = symboltable_lookup(node->parent->lhs->lhs->rhs->buffer);
if (symbol && symbol->type_qualifier == KERNEL) {
fprintf(CUDAHEADER, "GEN_KERNEL_BUILTIN_VARIABLES_BOILERPLATE();");
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == IN) {
fprintf(CUDAHEADER, "const %sData %s = READ(handle_%s);\n",
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier, symbol_table[i].identifier);
}
else if (symbol_table[i].type_qualifier == OUT) {
fprintf(CUDAHEADER, "%s %s = READ_OUT(handle_%s);",
translate(symbol_table[i].type_specifier),
symbol_table[i].identifier, symbol_table[i].identifier);
}
}
}
}
}
// Traverse LHS // Traverse LHS
if (node->lhs) if (node->lhs)
traverse(node->lhs); traverse(node->lhs);
// Infix translation // Infix translation
if (translate(node->infix)) if (!inside_declaration && translate(node->infix))
fprintf(CUDAHEADER, "%s", translate(node->infix)); fprintf(CUDAHEADER, "%s", translate(node->infix));
// Infix logic // Infix logic
// TODO // If the node is a subscript expression and the expression list inside it is not empty
if (node->type == NODE_MULTIDIM_SUBSCRIPT_EXPRESSION && node->rhs)
fprintf(CUDAHEADER, "IDX(");
// Traverse RHS // Traverse RHS
if (node->rhs) if (node->rhs)
traverse(node->rhs); traverse(node->rhs);
// Postfix translation
if (translate(node->postfix))
fprintf(CUDAHEADER, "%s", translate(node->postfix));
// Translate existing symbols
const Symbol* symbol = symboltable_lookup(node->buffer);
if (symbol) {
// Uniforms
if (symbol->type_qualifier == UNIFORM) {
fprintf(CUDAHEADER, "DCONST(%s) ", symbol->identifier);
}
else {
// print_symbol2(symbol);
}
}
else {
/*
// Translate literals
if (translate(node->token))
printf("%s ", translate(node->token));
if (node->buffer) {
if (node->type == NODE_REAL_NUMBER) {
printf("%s(%s) ", translate(SCALAR), node->buffer); // Cast to correct precision
}
else {
printf("%s ", node->buffer);
}
}
*/
}
// Add new symbols to the symbol table // Add new symbols to the symbol table
if (node->type == NODE_DECLARATION) { if (node->type == NODE_DECLARATION) {
int stype; int stype;
@@ -311,6 +352,7 @@ traverse(const ASTNode* node)
const char* identifier = node->rhs->type == NODE_IDENTIFIER ? node->rhs->buffer const char* identifier = node->rhs->type == NODE_IDENTIFIER ? node->rhs->buffer
: node->rhs->lhs->buffer; : node->rhs->lhs->buffer;
add_symbol(stype, tqualifier, tspecifier, identifier); add_symbol(stype, tqualifier, tspecifier, identifier);
printf("Added %s\n", identifier);
// Translate the new symbol // Translate the new symbol
if (tqualifier == UNIFORM) { if (tqualifier == UNIFORM) {
@@ -328,22 +370,41 @@ traverse(const ASTNode* node)
fprintf(CUDAHEADER, "%s %s\npreprocessed_%s", // fprintf(CUDAHEADER, "%s %s\npreprocessed_%s", //
translate(tqualifier), translate(tspecifier), identifier); translate(tqualifier), translate(tspecifier), identifier);
} }
else if (stype == SYMBOLTYPE_FUNCTION) {
// Stencil assembly stage device function
fprintf(CUDAHEADER, "%s %s\n%s", //
translate(DEVICE), translate(tspecifier), identifier);
}
else if (stype == SYMBOLTYPE_FUNCTION_PARAMETER) { else if (stype == SYMBOLTYPE_FUNCTION_PARAMETER) {
tmp = tmp->parent; tmp = tmp->parent;
assert(tmp->type = NODE_FUNCTION_DECLARATION); assert(tmp->type = NODE_FUNCTION_DECLARATION);
const Symbol* parent_function = symboltable_lookup(tmp->lhs->rhs->buffer); const Symbol* parent_function = symboltable_lookup(tmp->lhs->rhs->buffer);
assert(parent_function); assert(parent_function);
if (tqualifier == IN || tqualifier == OUT) { if (tqualifier == IN || tqualifier == OUT) {
if (parent_function->type_qualifier == 0 || if (tmp->lhs->lhs->lhs->token == DEVICE) {
parent_function->type_qualifier == PREPROCESSED) {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
else {
fprintf(CUDAHEADER, "const %sData& %s", // fprintf(CUDAHEADER, "const %sData& %s", //
translate(tspecifier), identifier); translate(tspecifier), identifier);
} }
else {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
/*
if (parent_function->type_qualifier == 0 ||
parent_function->type_qualifier == PREPROCESSED) {
fprintf(CUDAHEADER, "const __restrict__ %s* %s", //
translate(tspecifier), identifier);
}
else {
fprintf(CUDAHEADER, "const %sData& %s", //
translate(tspecifier), identifier);
}*/
}
else {
print_symbol2(&symbol_table[num_symbols[current_nest] - 1]);
} }
} }
else if (tqualifier == IN || tqualifier == OUT) { // Global in/out declarator else if (tqualifier == IN || tqualifier == OUT) { // Global in/out declarator
@@ -356,22 +417,183 @@ traverse(const ASTNode* node)
// Do a regular translation // Do a regular translation
print_symbol2(&symbol_table[num_symbols[current_nest] - 1]); print_symbol2(&symbol_table[num_symbols[current_nest] - 1]);
} }
if (node->rhs->type == NODE_ARRAY_DECLARATION) {
// Traverse the expression once again, this time with
// "inside_declaration" flag off
inside_declaration = false;
fprintf(CUDAHEADER, "%s ", translate(node->rhs->infix));
if (node->rhs->rhs)
traverse(node->rhs->rhs);
fprintf(CUDAHEADER, "%s ", translate(node->rhs->postfix));
}
}
else {
// Translate existing symbols
const Symbol* symbol = symboltable_lookup(node->buffer);
if (symbol) {
// Uniforms
if (symbol->type_qualifier == UNIFORM) {
fprintf(CUDAHEADER, "DCONST(%s) ", symbol->identifier);
}
else if (node->parent->type != NODE_DECLARATION) {
// Regular translation
if (translate(node->token))
fprintf(CUDAHEADER, "%s ", translate(node->token));
if (node->buffer)
fprintf(CUDAHEADER, "%s ", node->buffer);
}
}
else if (!inside_declaration) {
// Literal translation
if (translate(node->token))
fprintf(CUDAHEADER, "%s ", translate(node->token));
if (node->buffer) {
if (node->type == NODE_REAL_NUMBER) {
fprintf(CUDAHEADER, "%s(%s) ", translate(SCALAR),
node->buffer); // Cast to correct precision
}
else {
fprintf(CUDAHEADER, "%s ", node->buffer);
}
}
}
} }
// Postfix logic // Postfix logic
// If the node is a subscript expression and the expression list inside it is not empty
if (node->type == NODE_MULTIDIM_SUBSCRIPT_EXPRESSION && node->rhs)
fprintf(CUDAHEADER, ")"); // Closing bracket of IDX()
if (node->type == NODE_COMPOUND_STATEMENT) { if (node->type == NODE_COMPOUND_STATEMENT) {
// if (node->type == NODE_FUNCTION_DEFINITION || node->type == NODE_ITERATION_STATEMENT) {
assert(current_nest > 0); assert(current_nest > 0);
--current_nest; --current_nest;
// Drop function parameters
while (symbol_table[num_symbols[current_nest] - 1].type == SYMBOLTYPE_FUNCTION_PARAMETER)
--num_symbols[current_nest];
// Drop temporaries declared with iteration statements
// TODO
printf("Dropped rest of the symbol table, from %lu to %lu\n", num_symbols[current_nest + 1], printf("Dropped rest of the symbol table, from %lu to %lu\n", num_symbols[current_nest + 1],
num_symbols[current_nest]); num_symbols[current_nest]);
// Kernel writeback boilerplate
if (node->parent->type == NODE_FUNCTION_DEFINITION) {
const Symbol* symbol = symboltable_lookup(node->parent->lhs->lhs->rhs->buffer);
if (symbol && symbol->type_qualifier == KERNEL) {
for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == OUT) {
fprintf(CUDAHEADER, "WRITE_OUT(handle_%s, %s);\n",
symbol_table[i].identifier, symbol_table[i].identifier);
}
}
}
}
} }
if (node->type == NODE_DECLARATION)
inside_declaration = false;
// Postfix translation
if (!inside_declaration && translate(node->postfix))
fprintf(CUDAHEADER, "%s", translate(node->postfix));
}
static void
gen_preprocessed_forward_declarations(void)
{
} }
static void static void
generate_preprocessed_structures(void) generate_preprocessed_structures(void)
{ {
// TODO // Data structure
fprintf(CUDAHEADER, "\n");
// Read data to the data struct
fprintf(CUDAHEADER, "static __device__ __forceinline__ AcRealData\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int handle)\
{\n\
%sData data;\n",
translate(SCALAR));
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER,
"data.%s = preprocessed_%s(vertexIdx, globalVertexIdx, buf[handle]);\n",
symbol_table[i].identifier, symbol_table[i].identifier);
}
fprintf(CUDAHEADER, "return data;\n");
fprintf(CUDAHEADER, "}\n");
// Functions for accessing the data struct members
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "static __device__ __forceinline__ %s\
%s(const AcRealData& data)\
{\n\
return data.%s;\
}\n",
translate(symbol_table[i].type_specifier), symbol_table[i].identifier,
symbol_table[i].identifier);
}
// Syntactic sugar: Vector data struct
fprintf(CUDAHEADER, "static __device__ __forceinline__ AcReal3Data\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int3& handle)\
{\
AcReal3Data data;\
\
data.x = read_data(vertexIdx, globalVertexIdx, buf, handle.x);\
data.y = read_data(vertexIdx, globalVertexIdx, buf, handle.y);\
data.z = read_data(vertexIdx, globalVertexIdx, buf, handle.z);\
\
return data;\
}\
");
const size_t max_buflen = 65536;
char buffer[max_buflen];
rewind(CUDAHEADER);
const size_t buflen = fread(buffer, sizeof(char), max_buflen, CUDAHEADER);
fclose(CUDAHEADER);
CUDAHEADER = fopen("user_kernels.h", "w+");
fprintf(CUDAHEADER, "#pragma once\n");
fprintf(CUDAHEADER, "typedef struct {\n");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "%s %s;\n", translate(symbol_table[i].type_specifier),
symbol_table[i].identifier);
}
fprintf(CUDAHEADER, "} %sData;\n", translate(SCALAR));
fprintf(CUDAHEADER, "typedef struct {\
AcRealData x;\
AcRealData y;\
AcRealData z;\
} AcReal3Data;\n");
fprintf(CUDAHEADER, "static __device__ AcRealData\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int handle);\n");
fprintf(CUDAHEADER, "static __device__ AcReal3Data\
read_data(const int3& vertexIdx,\
const int3& globalVertexIdx,\
AcReal* __restrict__ buf[], const int3& handle);\n");
for (size_t i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == PREPROCESSED)
fprintf(CUDAHEADER, "static __device__ %s %s(const AcRealData& data);\n",
translate(symbol_table[i].type_specifier), symbol_table[i].identifier);
}
fwrite(buffer, sizeof(char), buflen, CUDAHEADER);
} }
static void static void
@@ -440,7 +662,7 @@ static void
generate_library_hooks(void) generate_library_hooks(void)
{ {
for (int i = 0; i < num_symbols[current_nest]; ++i) { for (int i = 0; i < num_symbols[current_nest]; ++i) {
if (symbol_table[i].type_qualifier == KERNEL && symbol_table[i].type_qualifier == UNIFORM) { if (symbol_table[i].type_qualifier == KERNEL) {
fprintf(CUDAHEADER, "GEN_DEVICE_FUNC_HOOK(%s)\n", symbol_table[i].identifier); fprintf(CUDAHEADER, "GEN_DEVICE_FUNC_HOOK(%s)\n", symbol_table[i].identifier);
} }
} }
@@ -464,6 +686,7 @@ main(int argc, char** argv)
traverse(root); traverse(root);
generate_header(); generate_header();
generate_preprocessed_structures();
generate_library_hooks(); generate_library_hooks();
print_symbol_table(); print_symbol_table();

View File

@@ -2,6 +2,13 @@
#define STENCIL_ORDER (6) #define STENCIL_ORDER (6)
#endif #endif
uniform Scalar AC_dsx;
uniform Scalar AC_dsy;
uniform Scalar AC_dsz;
uniform Scalar AC_inv_dsx;
uniform Scalar AC_inv_dsy;
uniform Scalar AC_inv_dsz;
Scalar Scalar
first_derivative(Scalar pencil[], Scalar inv_ds) first_derivative(Scalar pencil[], Scalar inv_ds)
{ {
@@ -212,6 +219,12 @@ value(in ScalarField vertex)
return vertex[vertexIdx]; return vertex[vertexIdx];
} }
Device Vector
value(in VectorField uu)
{
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
}
Preprocessed Vector Preprocessed Vector
gradient(in ScalarField vertex) gradient(in ScalarField vertex)
{ {
@@ -221,12 +234,106 @@ gradient(in ScalarField vertex)
Preprocessed Matrix Preprocessed Matrix
hessian(in ScalarField vertex) hessian(in ScalarField vertex)
{ {
Matrix hessian; Matrix mat;
hessian.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex), mat.row[0] = (Vector){derxx(vertexIdx, vertex), derxy(vertexIdx, vertex),
derxz(vertexIdx, vertex)}; derxz(vertexIdx, vertex)};
hessian.row[1] = (Vector){hessian.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)}; mat.row[1] = (Vector){mat.row[0].y, deryy(vertexIdx, vertex), deryz(vertexIdx, vertex)};
hessian.row[2] = (Vector){hessian.row[0].z, hessian.row[1].z, derzz(vertexIdx, vertex)}; mat.row[2] = (Vector){mat.row[0].z, mat.row[1].z, derzz(vertexIdx, vertex)};
return hessian; return mat;
}
/////////////////// NEW
Device Scalar
laplace(in ScalarField data)
{
return hessian(data).row[0].x + hessian(data).row[1].y + hessian(data).row[2].z;
}
Device Scalar
divergence(in VectorField vec)
{
return gradient(vec.x).x + gradient(vec.y).y + gradient(vec.z).z;
}
Device Vector
laplace_vec(in VectorField vec)
{
return (Vector){laplace(vec.x), laplace(vec.y), laplace(vec.z)};
}
Device Vector
curl(in VectorField vec)
{
return (Vector){gradient(vec.z).y - gradient(vec.y).z, gradient(vec.x).z - gradient(vec.z).x,
gradient(vec.y).x - gradient(vec.x).y};
}
Device Vector
gradient_of_divergence(in VectorField vec)
{
return (Vector){hessian(vec.x).row[0].x + hessian(vec.y).row[0].y + hessian(vec.z).row[0].z,
hessian(vec.x).row[1].x + hessian(vec.y).row[1].y + hessian(vec.z).row[1].z,
hessian(vec.x).row[2].x + hessian(vec.y).row[2].y + hessian(vec.z).row[2].z};
}
// Takes uu gradients and returns S
Device Matrix
stress_tensor(in VectorField vec)
{
Matrix S;
S.row[0].x = Scalar(2.0 / 3.0) * gradient(vec.x).x -
Scalar(1.0 / 3.0) * (gradient(vec.y).y + gradient(vec.z).z);
S.row[0].y = Scalar(1.0 / 2.0) * (gradient(vec.x).y + gradient(vec.y).x);
S.row[0].z = Scalar(1.0 / 2.0) * (gradient(vec.x).z + gradient(vec.z).x);
S.row[1].y = Scalar(2.0 / 3.0) * gradient(vec.y).y -
Scalar(1.0 / 3.0) * (gradient(vec.x).x + gradient(vec.z).z);
S.row[1].z = Scalar(1.0 / 2.0) * (gradient(vec.y).z + gradient(vec.z).y);
S.row[2].z = Scalar(2.0 / 3.0) * gradient(vec.z).z -
Scalar(1.0 / 3.0) * (gradient(vec.x).x + gradient(vec.y).y);
S.row[1].x = S.row[0].y;
S.row[2].x = S.row[0].z;
S.row[2].y = S.row[1].z;
return S;
}
Device Scalar
contract(const Matrix mat)
{
Scalar res = 0;
for (int i = 0; i < 3; ++i) {
res = res + dot(mat.row[i], mat.row[i]);
}
return res;
}
///////////////////// NEW NEW BLAS
Device Scalar
length(const Vector vec)
{
return sqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
}
Device Scalar
reciprocal_len(const Vector vec)
{
return rsqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
}
Device Vector
normalized(const Vector vec)
{
const Scalar inv_len = reciprocal_len(vec);
return inv_len * vec;
} }