Cleanup before merging to the master merge candidate branch

This commit is contained in:
jpekkila
2020-06-24 15:13:15 +03:00
parent 0e4b39d6d7
commit f04e347c45
4 changed files with 52 additions and 269 deletions

View File

@@ -5,5 +5,5 @@ find_package(OpenMP)
find_package(CUDAToolkit)
add_executable(bwtest main.c)
target_link_libraries(bwtest MPI::MPI_C OpenMP::OpenMP_C CUDA::cudart_static)
target_link_libraries(bwtest MPI::MPI_C OpenMP::OpenMP_C CUDA::cudart_static CUDA::cuda_driver)
target_compile_options(bwtest PRIVATE -O3)

View File

@@ -7,6 +7,7 @@
#include <mpi.h>
#include <cuda_runtime_api.h>
#include <cuda.h> // CUDA driver API
#include "timer_hires.h" // From src/common
@@ -56,6 +57,17 @@ allocDevice(const size_t bytes)
static uint8_t*
allocDevicePinned(const size_t bytes)
{
#define USE_CUDA_DRIVER_PINNING (1)
#if USE_CUDA_DRIVER_PINNING
uint8_t* arr = allocDevice(bytes);
unsigned int flag = 1;
CUresult retval = cuPointerSetAttribute(&flag, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, (CUdeviceptr)arr);
errchk(retval == CUDA_SUCCESS);
return arr;
#else
uint8_t* arr;
// Standard (20 GiB/s internode, 85 GiB/s intranode)
// const cudaError_t retval = cudaMalloc((void**)&arr, bytes);
@@ -65,8 +77,24 @@ allocDevicePinned(const size_t bytes)
const cudaError_t retval = cudaMallocHost((void**)&arr, bytes);
errchk(retval == cudaSuccess);
return arr;
#endif
}
/*
static uint8_t*
allocDevicePinned(const size_t bytes)
{
uint8_t* arr;
// Standard (20 GiB/s internode, 85 GiB/s intranode)
// const cudaError_t retval = cudaMalloc((void**)&arr, bytes);
// Unified mem (5 GiB/s internode, 6 GiB/s intranode)
// const cudaError_t retval = cudaMallocManaged((void**)&arr, bytes, cudaMemAttachGlobal);
// Pinned (40 GiB/s internode, 10 GiB/s intranode)
const cudaError_t retval = cudaMallocHost((void**)&arr, bytes);
errchk(retval == cudaSuccess);
return arr;
}*/
static void
freeDevice(uint8_t* arr)
{

View File

@@ -2,7 +2,7 @@ find_package(CUDAToolkit)
## Astaroth Core
add_library(astaroth_core STATIC device.cc node.cc astaroth.cc)
target_link_libraries(astaroth_core astaroth_utils astaroth_kernels CUDA::cudart)
target_link_libraries(astaroth_core astaroth_utils astaroth_kernels CUDA::cudart CUDA::cuda_driver)
## Options
if (MPI_ENABLED)

View File

@@ -10,13 +10,16 @@
#include "kernels/kernels.h"
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
#define MPI_GPUDIRECT_DISABLED (0)
#define DECOMPOSITION_AXES (3)
#define MPI_GPUDIRECT_DISABLED (0) // Buffer through host memory, deprecated
#define MPI_DECOMPOSITION_AXES (3)
#define MPI_COMPUTE_ENABLED (1)
#define MPI_COMM_ENABLED (1)
#define MPI_INCL_CORNERS (0)
#define MPI_USE_PINNED (1)
#define MPI_USE_PINNED (1) // Do inter-node comm with pinned memory
#define MPI_USE_CUDA_DRIVER_PINNING (0) // Pin with cuPointerSetAttribute, otherwise cudaMallocHost
#include <cuda.h> // CUDA driver API (needed if MPI_USE_CUDA_DRIVER_PINNING is set)
AcResult
acDevicePrintInfo(const Device device)
@@ -530,7 +533,7 @@ morton3D(const uint64_t pid)
uint64_t i, j, k;
i = j = k = 0;
if (DECOMPOSITION_AXES == 3) {
if (MPI_DECOMPOSITION_AXES == 3) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << 3 * bit;
k |= ((pid & (mask << 0)) >> 2 * bit) >> 0;
@@ -538,32 +541,22 @@ morton3D(const uint64_t pid)
i |= ((pid & (mask << 2)) >> 2 * bit) >> 2;
}
}
/*
else if (DECOMPOSITION_AXES == 3) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << 3 * bit;
i |= ((pid & (mask << 0)) >> 2 * bit) >> 0;
j |= ((pid & (mask << 1)) >> 2 * bit) >> 1;
k |= ((pid & (mask << 2)) >> 2 * bit) >> 2;
}
}
*/
// Just a quick copy/paste for other decomp dims
else if (DECOMPOSITION_AXES == 2) {
else if (MPI_DECOMPOSITION_AXES == 2) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << 2 * bit;
j |= ((pid & (mask << 0)) >> 1 * bit) >> 0;
k |= ((pid & (mask << 1)) >> 1 * bit) >> 1;
}
}
else if (DECOMPOSITION_AXES == 1) {
else if (MPI_DECOMPOSITION_AXES == 1) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << 1 * bit;
k |= ((pid & (mask << 0)) >> 0 * bit) >> 0;
}
}
else {
fprintf(stderr, "Invalid DECOMPOSITION_AXES\n");
fprintf(stderr, "Invalid MPI_DECOMPOSITION_AXES\n");
ERRCHK_ALWAYS(0);
}
@@ -575,7 +568,7 @@ morton1D(const uint3_64 pid)
{
uint64_t i = 0;
if (DECOMPOSITION_AXES == 3) {
if (MPI_DECOMPOSITION_AXES == 3) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << bit;
i |= ((pid.z & mask) << 0) << 2 * bit;
@@ -583,64 +576,26 @@ morton1D(const uint3_64 pid)
i |= ((pid.x & mask) << 2) << 2 * bit;
}
}
/*
else if (DECOMPOSITION_AXES == 3) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << bit;
i |= ((pid.x & mask) << 0) << 2 * bit;
i |= ((pid.y & mask) << 1) << 2 * bit;
i |= ((pid.z & mask) << 2) << 2 * bit;
}
}*/
else if (DECOMPOSITION_AXES == 2) {
else if (MPI_DECOMPOSITION_AXES == 2) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << bit;
i |= ((pid.y & mask) << 0) << 1 * bit;
i |= ((pid.z & mask) << 1) << 1 * bit;
}
}
else if (DECOMPOSITION_AXES == 1) {
else if (MPI_DECOMPOSITION_AXES == 1) {
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << bit;
i |= ((pid.z & mask) << 0) << 0 * bit;
}
}
else {
fprintf(stderr, "Invalid DECOMPOSITION_AXES\n");
fprintf(stderr, "Invalid MPI_DECOMPOSITION_AXES\n");
ERRCHK_ALWAYS(0);
}
return i;
}
/*
static uint3_64
morton3D(const uint64_t pid)
{
uint64_t i, j, k;
i = j = k = 0;
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << 3 * bit;
i |= ((pid & (mask << 0)) >> 2 * bit) >> 0;
j |= ((pid & (mask << 1)) >> 2 * bit) >> 1;
k |= ((pid & (mask << 2)) >> 2 * bit) >> 2;
}
return (uint3_64){i, j, k};
}
static uint64_t
morton1D(const uint3_64 pid)
{
uint64_t i = 0;
for (int bit = 0; bit <= 21; ++bit) {
const uint64_t mask = 0x1l << bit;
i |= ((pid.x & mask) << 0) << 2 * bit;
i |= ((pid.y & mask) << 1) << 2 * bit;
i |= ((pid.z & mask) << 2) << 2 * bit;
}
return i;
}
*/
static uint3_64
decompose(const uint64_t target)
@@ -701,9 +656,17 @@ acCreatePackedData(const int3 dims)
const size_t bytes = dims.x * dims.y * dims.z * sizeof(data.data[0]) * NUM_VTXBUF_HANDLES;
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&data.data, bytes));
#if MPI_USE_CUDA_DRIVER_PINNING
ERRCHK_CUDA_ALWAYS(cudaMalloc((void**)&data.data_pinned, bytes));
unsigned int flag = 1;
CUresult retval = cuPointerSetAttribute(&flag, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, (CUdeviceptr)data.data_pinned);
ERRCHK_ALWAYS(retval == CUDA_SUCCESS);
#else
ERRCHK_CUDA_ALWAYS(cudaMallocHost((void**)&data.data_pinned, bytes));
// ERRCHK_CUDA_ALWAYS(cudaMallocManaged((void**)&data.data_pinned, bytes)); // Significantly
// slower than pinned (38 ms vs. 125 ms)
#fi // USE_CUDA_DRIVER_PINNING
return data;
}
@@ -1588,214 +1551,6 @@ acGridIntegrate(const Stream stream, const AcReal dt)
return AC_SUCCESS;
}
AcResult
acGridIntegrateORIGINAL(const Stream stream, const AcReal dt)
{
ERRCHK(grid.initialized);
// acGridSynchronizeStream(stream);
const Device device = grid.device;
const int3 nn = grid.nn;
// CommData corner_data = grid.corner_data; // Do not rm: required for corners
CommData edgex_data = grid.edgex_data;
CommData edgey_data = grid.edgey_data;
CommData edgez_data = grid.edgez_data;
CommData sidexy_data = grid.sidexy_data;
CommData sidexz_data = grid.sidexz_data;
CommData sideyz_data = grid.sideyz_data;
acDeviceSynchronizeStream(device, stream);
// Corners
/*
// Do not rm: required for corners
const int3 corner_b0s[] = {
(int3){0, 0, 0},
(int3){NGHOST + nn.x, 0, 0},
(int3){0, NGHOST + nn.y, 0},
(int3){0, 0, NGHOST + nn.z},
(int3){NGHOST + nn.x, NGHOST + nn.y, 0},
(int3){NGHOST + nn.x, 0, NGHOST + nn.z},
(int3){0, NGHOST + nn.y, NGHOST + nn.z},
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST + nn.z},
};
*/
// Edges X
const int3 edgex_b0s[] = {
(int3){NGHOST, 0, 0},
(int3){NGHOST, NGHOST + nn.y, 0},
(int3){NGHOST, 0, NGHOST + nn.z},
(int3){NGHOST, NGHOST + nn.y, NGHOST + nn.z},
};
// Edges Y
const int3 edgey_b0s[] = {
(int3){0, NGHOST, 0},
(int3){NGHOST + nn.x, NGHOST, 0},
(int3){0, NGHOST, NGHOST + nn.z},
(int3){NGHOST + nn.x, NGHOST, NGHOST + nn.z},
};
// Edges Z
const int3 edgez_b0s[] = {
(int3){0, 0, NGHOST},
(int3){NGHOST + nn.x, 0, NGHOST},
(int3){0, NGHOST + nn.y, NGHOST},
(int3){NGHOST + nn.x, NGHOST + nn.y, NGHOST},
};
// Sides XY
const int3 sidexy_b0s[] = {
(int3){NGHOST, NGHOST, 0}, //
(int3){NGHOST, NGHOST, NGHOST + nn.z}, //
};
// Sides XZ
const int3 sidexz_b0s[] = {
(int3){NGHOST, 0, NGHOST}, //
(int3){NGHOST, NGHOST + nn.y, NGHOST}, //
};
// Sides YZ
const int3 sideyz_b0s[] = {
(int3){0, NGHOST, NGHOST}, //
(int3){NGHOST + nn.x, NGHOST, NGHOST}, //
};
for (int isubstep = 0; isubstep < 3; ++isubstep) {
#if MPI_COMM_ENABLED
// acPackCommData(device, corner_b0s, &corner_data); // Do not rm: required for corners
acPackCommData(device, edgex_b0s, &edgex_data);
acPackCommData(device, edgey_b0s, &edgey_data);
acPackCommData(device, edgez_b0s, &edgez_data);
acPackCommData(device, sidexy_b0s, &sidexy_data);
acPackCommData(device, sidexz_b0s, &sidexz_data);
acPackCommData(device, sideyz_b0s, &sideyz_data);
#endif
#if MPI_COMM_ENABLED
MPI_Barrier(MPI_COMM_WORLD);
#if MPI_GPUDIRECT_DISABLED
// acTransferCommDataToHost(device, &corner_data); // Do not rm: required for corners
acTransferCommDataToHost(device, &edgex_data);
acTransferCommDataToHost(device, &edgey_data);
acTransferCommDataToHost(device, &edgez_data);
acTransferCommDataToHost(device, &sidexy_data);
acTransferCommDataToHost(device, &sidexz_data);
acTransferCommDataToHost(device, &sideyz_data);
#endif
// acTransferCommData(device, corner_b0s, &corner_data); // Do not rm: required for corners
acTransferCommData(device, edgex_b0s, &edgex_data);
acTransferCommData(device, edgey_b0s, &edgey_data);
acTransferCommData(device, edgez_b0s, &edgez_data);
acTransferCommData(device, sidexy_b0s, &sidexy_data);
acTransferCommData(device, sidexz_b0s, &sidexz_data);
acTransferCommData(device, sideyz_b0s, &sideyz_data);
#endif // MPI_COMM_ENABLED
#if MPI_COMPUTE_ENABLED
//////////// INNER INTEGRATION //////////////
{
const int3 m1 = (int3){2 * NGHOST, 2 * NGHOST, 2 * NGHOST};
const int3 m2 = nn;
acDeviceIntegrateSubstep(device, STREAM_16, isubstep, m1, m2, dt);
}
////////////////////////////////////////////
#endif // MPI_COMPUTE_ENABLED
#if MPI_COMM_ENABLED
// acTransferCommDataWait(corner_data); // Do not rm: required for corners
acTransferCommDataWait(edgex_data);
acTransferCommDataWait(edgey_data);
acTransferCommDataWait(edgez_data);
acTransferCommDataWait(sidexy_data);
acTransferCommDataWait(sidexz_data);
acTransferCommDataWait(sideyz_data);
#if MPI_GPUDIRECT_DISABLED
// acTransferCommDataToDevice(device, &corner_data); // Do not rm: required for corners
acTransferCommDataToDevice(device, &edgex_data);
acTransferCommDataToDevice(device, &edgey_data);
acTransferCommDataToDevice(device, &edgez_data);
acTransferCommDataToDevice(device, &sidexy_data);
acTransferCommDataToDevice(device, &sidexz_data);
acTransferCommDataToDevice(device, &sideyz_data);
#endif
// acUnpinCommData(device, &corner_data); // Do not rm: required for corners
acUnpinCommData(device, &edgex_data);
acUnpinCommData(device, &edgey_data);
acUnpinCommData(device, &edgez_data);
acUnpinCommData(device, &sidexy_data);
acUnpinCommData(device, &sidexz_data);
acUnpinCommData(device, &sideyz_data);
// acUnpackCommData(device, corner_b0s, &corner_data);
acUnpackCommData(device, edgex_b0s, &edgex_data);
acUnpackCommData(device, edgey_b0s, &edgey_data);
acUnpackCommData(device, edgez_b0s, &edgez_data);
acUnpackCommData(device, sidexy_b0s, &sidexy_data);
acUnpackCommData(device, sidexz_b0s, &sidexz_data);
acUnpackCommData(device, sideyz_b0s, &sideyz_data);
//////////// OUTER INTEGRATION //////////////
// Wait for unpacking
// acSyncCommData(corner_data); // Do not rm: required for corners
acSyncCommData(edgex_data);
acSyncCommData(edgey_data);
acSyncCommData(edgez_data);
acSyncCommData(sidexy_data);
acSyncCommData(sidexz_data);
acSyncCommData(sideyz_data);
#endif // MPI_COMM_ENABLED
#if MPI_COMPUTE_ENABLED
{ // Front
const int3 m1 = (int3){NGHOST, NGHOST, NGHOST};
const int3 m2 = m1 + (int3){nn.x, nn.y, NGHOST};
acDeviceIntegrateSubstep(device, STREAM_0, isubstep, m1, m2, dt);
}
{ // Back
const int3 m1 = (int3){NGHOST, NGHOST, nn.z};
const int3 m2 = m1 + (int3){nn.x, nn.y, NGHOST};
acDeviceIntegrateSubstep(device, STREAM_1, isubstep, m1, m2, dt);
}
{ // Bottom
const int3 m1 = (int3){NGHOST, NGHOST, 2 * NGHOST};
const int3 m2 = m1 + (int3){nn.x, NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_2, isubstep, m1, m2, dt);
}
{ // Top
const int3 m1 = (int3){NGHOST, nn.y, 2 * NGHOST};
const int3 m2 = m1 + (int3){nn.x, NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_3, isubstep, m1, m2, dt);
}
{ // Left
const int3 m1 = (int3){NGHOST, 2 * NGHOST, 2 * NGHOST};
const int3 m2 = m1 + (int3){NGHOST, nn.y - 2 * NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_4, isubstep, m1, m2, dt);
}
{ // Right
const int3 m1 = (int3){nn.x, 2 * NGHOST, 2 * NGHOST};
const int3 m2 = m1 + (int3){NGHOST, nn.y - 2 * NGHOST, nn.z - 2 * NGHOST};
acDeviceIntegrateSubstep(device, STREAM_5, isubstep, m1, m2, dt);
}
#endif // MPI_COMPUTE_ENABLED
acDeviceSwapBuffers(device);
acDeviceSynchronizeStream(device, STREAM_ALL); // Wait until inner and outer done
////////////////////////////////////////////
}
return AC_SUCCESS;
}
AcResult
acGridPeriodicBoundconds(const Stream stream)
{