Files
astaroth/src/standalone/simulation.cc

379 lines
14 KiB
C++

/*
Copyright (C) 2014-2019, Johannes Pekkilae, Miikka Vaeisalae.
This file is part of Astaroth.
Astaroth is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Astaroth is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Astaroth. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file
* \brief Brief info.
*
* Detailed info.
*
*/
#include "run.h"
#include "config_loader.h"
#include "model/host_forcing.h"
#include "model/host_memory.h"
#include "model/host_timestep.h"
#include "model/model_reduce.h"
#include "model/model_rk3.h"
#include "src/core/errchk.h"
#include "src/core/math_utils.h"
#include "timer_hires.h"
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
// Write all setting info into a separate ascii file. This is done to guarantee
// that we have the data specifi information in the thing, even though in
// principle these things are in the astaroth.conf.
static inline void
write_mesh_info(const AcMeshInfo* config)
{
FILE* infotxt;
infotxt = fopen("purge.sh", "w");
fprintf(infotxt, "#!/bin/bash\n");
fprintf(infotxt, "rm *.list *.mesh *.ts purge.sh\n");
fclose(infotxt);
infotxt = fopen("mesh_info.list", "w");
// Total grid dimensions
fprintf(infotxt, "int AC_mx %i \n", config->int_params[AC_mx]);
fprintf(infotxt, "int AC_my %i \n", config->int_params[AC_my]);
fprintf(infotxt, "int AC_mz %i \n", config->int_params[AC_mz]);
// Bounds for the computational domain, i.e. nx_min <= i < nx_max
fprintf(infotxt, "int AC_nx_min %i \n", config->int_params[AC_nx_min]);
fprintf(infotxt, "int AC_nx_max %i \n", config->int_params[AC_nx_max]);
fprintf(infotxt, "int AC_ny_min %i \n", config->int_params[AC_ny_min]);
fprintf(infotxt, "int AC_ny_max %i \n", config->int_params[AC_ny_max]);
fprintf(infotxt, "int AC_nz_min %i \n", config->int_params[AC_nz_min]);
fprintf(infotxt, "int AC_nz_max %i \n", config->int_params[AC_nz_max]);
// Spacing
fprintf(infotxt, "real AC_dsx %e \n", (double)config->real_params[AC_dsx]);
fprintf(infotxt, "real AC_dsy %e \n", (double)config->real_params[AC_dsy]);
fprintf(infotxt, "real AC_dsz %e \n", (double)config->real_params[AC_dsz]);
fprintf(infotxt, "real AC_inv_dsx %e \n", (double)config->real_params[AC_inv_dsx]);
fprintf(infotxt, "real AC_inv_dsy %e \n", (double)config->real_params[AC_inv_dsy]);
fprintf(infotxt, "real AC_inv_dsz %e \n", (double)config->real_params[AC_inv_dsz]);
fprintf(infotxt, "real AC_dsmin %e \n", (double)config->real_params[AC_dsmin]);
/* Additional helper params */
// Int helpers
fprintf(infotxt, "int AC_mxy %i \n", config->int_params[AC_mxy]);
fprintf(infotxt, "int AC_nxy %i \n", config->int_params[AC_nxy]);
fprintf(infotxt, "int AC_nxyz %i \n", config->int_params[AC_nxyz]);
// Real helpers
fprintf(infotxt, "real AC_cs2_sound %e \n", (double)config->real_params[AC_cs2_sound]);
fprintf(infotxt, "real AC_cv_sound %e \n", (double)config->real_params[AC_cv_sound]);
//Here I'm still trying to copy the structure of the code above, and see if this will work for sink particle.
//I haven't fully undertand what these lines do but I'll read up on them soon. This is still yet experimental.
// Sink particle
fprintf(infotxt, "real AC_sink_pos_x %e \n", (double)config->real_params[AC_sink_pos_x]);
fprintf(infotxt, "real AC_sink_pos_y %e \n", (double)config->real_params[AC_sink_pos_y]);
fprintf(infotxt, "real AC_sink_pos_z %e \n", (double)config->real_params[AC_sink_pos_z]);
fprintf(infotxt, "real AC_M_sink %e \n", (double)config->real_params[AC_M_sink]);
fprintf(infotxt, "real AC_soft %e \n", (double)config->real_params[AC_soft]);
fprintf(infotxt, "real AC_G_const %e \n", (double)config->real_params[AC_G_const]);
fclose(infotxt);
}
// This funtion writes a run state into a set of C binaries. For the sake of
// accuracy, all floating point numbers are to be saved in long double precision
// regardless of the choise of accuracy during runtime.
static inline void
save_mesh(const AcMesh& save_mesh, const int step, const AcReal t_step)
{
FILE* save_ptr;
for (int w = 0; w < NUM_VTXBUF_HANDLES; ++w) {
const size_t n = acVertexBufferSize(save_mesh.info);
const char* buffername = vtxbuf_names[w];
char cstep[11];
char bin_filename[80] = "\0";
// sprintf(bin_filename, "");
sprintf(cstep, "%d", step);
strcat(bin_filename, buffername);
strcat(bin_filename, "_");
strcat(bin_filename, cstep);
strcat(bin_filename, ".mesh");
printf("Savefile %s \n", bin_filename);
save_ptr = fopen(bin_filename, "wb");
// Start file with time stamp
long double write_long_buf = (long double)t_step;
fwrite(&write_long_buf, sizeof(long double), 1, save_ptr);
// Grid data
for (size_t i = 0; i < n; ++i) {
const AcReal point_val = save_mesh.vertex_buffer[VertexBufferHandle(w)][i];
long double write_long_buf = (long double)point_val;
fwrite(&write_long_buf, sizeof(long double), 1, save_ptr);
}
fclose(save_ptr);
}
}
// This function prints out the diagnostic values to std.out and also saves and
// appends an ascii file to contain all the result.
static inline void
print_diagnostics(const int step, const AcReal dt, const AcReal t_step, FILE* diag_file,
const AcReal sink_mass, const AcReal accreted_mass)
{
AcReal buf_rms, buf_max, buf_min;
const int max_name_width = 16;
// Calculate rms, min and max from the velocity vector field
buf_max = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_min = acReduceVec(RTYPE_MIN, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
buf_rms = acReduceVec(RTYPE_RMS, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
// MV: The ordering in the earlier version was wrong in terms of variable
// MV: name and its diagnostics.
printf("Step %d, t_step %.3e, dt %e s\n", step, double(t_step), double(dt));
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, "uu total", double(buf_min),
double(buf_rms), double(buf_max));
fprintf(diag_file, "%d %e %e %e %e %e ", step, double(t_step), double(dt), double(buf_min),
double(buf_rms), double(buf_max));
// Calculate rms, min and max from the variables as scalars
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
buf_max = acReduceScal(RTYPE_MAX, VertexBufferHandle(i));
buf_min = acReduceScal(RTYPE_MIN, VertexBufferHandle(i));
buf_rms = acReduceScal(RTYPE_RMS, VertexBufferHandle(i));
printf(" %*s: min %.3e,\trms %.3e,\tmax %.3e\n", max_name_width, vtxbuf_names[i],
double(buf_min), double(buf_rms), double(buf_max));
fprintf(diag_file, "%e %e %e ", double(buf_min), double(buf_rms), double(buf_max));
}
if ((sink_mass >= 0.0) || (accreted_mass >= 0.0)) {
fprintf(diag_file, "%e %e ", sink_mass, accreted_mass);
}
fprintf(diag_file, "\n");
}
/*
MV NOTE: At the moment I have no clear idea how to calculate magnetic
diagnostic variables from grid. Vector potential measures have a limited
value. TODO: Smart way to get brms, bmin and bmax.
*/
int
run_simulation(void)
{
/* Parse configs */
AcMeshInfo mesh_info;
load_config(&mesh_info);
AcMesh* mesh = acmesh_create(mesh_info);
// TODO: This need to be possible to define in astaroth.conf
acmesh_init_to(INIT_TYPE_GAUSSIAN_RADIAL_EXPL, mesh);
#if LSINK
vertex_buffer_set(VTXBUF_ACCRETION, 0.0, mesh);
#endif
acInit(mesh_info);
acLoad(*mesh);
FILE* diag_file;
diag_file = fopen("timeseries.ts", "a");
// TODO Get time from earlier state.
AcReal t_step = 0.0;
// Generate the title row.
fprintf(diag_file, "step t_step dt uu_total_min uu_total_rms uu_total_max ");
for (int i = 0; i < NUM_VTXBUF_HANDLES; ++i) {
fprintf(diag_file, "%s_min %s_rms %s_max ", vtxbuf_names[i], vtxbuf_names[i],
vtxbuf_names[i]);
}
#if LSINK
fprintf(diag_file, "sink_mass accreted_mass ");
#endif
fprintf(diag_file, "\n");
write_mesh_info(&mesh_info);
#if LSINK
print_diagnostics(0, AcReal(.0), t_step, diag_file, mesh_info.real_params[AC_M_sink_init], 0.0);
#else
print_diagnostics(0, AcReal(.0), t_step, diag_file, -1.0, -1.0);
#endif
acBoundcondStep();
acStore(mesh);
save_mesh(*mesh, 0, t_step);
const int max_steps = mesh_info.int_params[AC_max_steps];
const int save_steps = mesh_info.int_params[AC_save_steps];
const int bin_save_steps = mesh_info.int_params[AC_bin_steps]; // TODO Get from mesh_info
AcReal bin_save_t = mesh_info.real_params[AC_bin_save_t];
AcReal bin_crit_t = bin_save_t;
/* initialize random seed: */
srand(312256655);
// TODO_SINK. init_sink_particle()
// Initialize the basic variables of the sink particle to a suitable initial value.
// 1. Location of the particle
// 2. Mass of the particle
// (3. Velocity of the particle)
// This at the level of Host in this case.
// acUpdate_sink_particle() will do the similar trick to the device.
/* Step the simulation */
#if LSINK
AcReal accreted_mass = 0.0;
#endif
for (int i = 1; i < max_steps; ++i) {
const AcReal umax = acReduceVec(RTYPE_MAX, VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ);
const AcReal dt = host_timestep(umax, mesh_info);
#if LSINK
const AcReal sum_mass = acReduceScal(RTYPE_MAX, VTXBUF_ACCRETION);
accreted_mass = accreted_mass + sum_mass;
AcReal sink_mass = 0.0;
sink_mass = mesh_info.real_params[AC_M_sink_init] + accreted_mass;
acLoadDeviceConstant(AC_M_sink, sink_mass);
vertex_buffer_set(VTXBUF_ACCRETION, 0.0, mesh);
int on_off_switch;
if (i < 50) {
on_off_switch = 0; //accretion is off till 1000 steps.
} else {
on_off_switch = 1;
}
acLoadDeviceConstant(AC_switch_accretion, on_off_switch);
#else
accreted_mass = -1.0; sink_mass = -1.0;
#endif
#if LFORCING
const ForcingParams forcing_params = generateForcingParams(mesh_info);
loadForcingParamsToDevice(forcing_params);
#endif
//TODO_SINK acUpdate_sink_particle()
// Update properties of the sing particle for acIntegrate(). Essentially:
// 1. Location of the particle
// 2. Mass of the particle
// 3. Velocity of the particle)
// These can be used for calculating he gravitational field.
// This is my first comment! by Jack
// This is my second comment! by Jack
acIntegrate(dt);
// TODO_SINK acAdvect_sink_particle()
// THIS IS OPTIONAL. We will start from unmoving particle.
// 1. Calculate the equation of motion for the sink particle.
// NOTE: Might require embedding with acIntegrate(dt).
// TODO_SINK acAccrete_sink_particle()
// Calculate accretion of the sink particle from the surrounding medium
// 1. Transfer density into sink particle mass
// 2. Transfer momentum into sink particle
// (OPTIONAL: Affection the motion of the particle)
// NOTE: Might require embedding with acIntegrate(dt).
// This is the hardest part. Please see Lee et al. ApJ 783 (2014) for reference.
t_step += dt;
/* Save the simulation state and print diagnostics */
if ((i % save_steps) == 0) {
/*
print_diagnostics() writes out both std.out printout from the
results and saves the diagnostics into a table for ascii file
timeseries.ts.
*/
print_diagnostics(i, dt, t_step, diag_file, sink_mass, accreted_mass);
printf("sink mass is: %.15e \n", sink_mass);
printf("accreted mass is: %.15e \n", accreted_mass);
/*
We would also might want an XY-average calculating funtion,
which can be very useful when observing behaviour of turbulent
simulations. (TODO)
*/
}
/* Save the simulation state and print diagnostics */
if ((i % bin_save_steps) == 0 || t_step >= bin_crit_t) {
/*
This loop saves the data into simple C binaries which can be
used for analysing the data snapshots closely.
Saving simulation state should happen in a separate stage. We do
not want to save it as often as diagnostics. The file format
should IDEALLY be HDF5 which has become a well supported, portable and
reliable data format when it comes to HPC applications.
However, implementing it will have to for more simpler approach
to function. (TODO?)
*/
/*
The updated mesh will be located on the GPU. Also all calls
to the astaroth interface (functions beginning with ac*) are
assumed to be asynchronous, so the meshes must be also synchronized
before transferring the data to the CPU. Like so:
acBoundcondStep();
acStore(mesh);
*/
acBoundcondStep();
acStore(mesh);
save_mesh(*mesh, i, t_step);
bin_crit_t += bin_save_t;
}
}
//////Save the final snapshot
////acSynchronize();
////acStore(mesh);
////save_mesh(*mesh, , t_step);
acQuit();
acmesh_destroy(mesh);
fclose(diag_file);
return 0;
}