This commit is contained in:
Carl Pearson
2016-11-17 09:42:11 -06:00
parent 7318b04c14
commit 1eddee5ec7

View File

@@ -10,11 +10,11 @@ DATA_TYPE = np.float32
def dataset_get_sin():
NUM = 1000
NUM = 200
RATIO = 0.7
SPLIT = int(NUM * RATIO)
data = np.zeros((NUM, 2), DATA_TYPE)
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
data[:, 0] = np.linspace(0.0, 1 * np.pi, num=NUM) # inputs
data[:, 1] = np.sin(data[:, 0]) # outputs
npr.shuffle(data)
training, test = data[:SPLIT, :], data[SPLIT:, :]
@@ -231,13 +231,13 @@ def evaluate(model, samples):
TRAIN_DATA, TEST_DATA = dataset_get_sin()
# TRAIN_DATA, TEST_DATA = dataset_get_linear()
MODEL = Model(10, sigmoid, d_sigmoid, DATA_TYPE)
MODEL = Model(8, sigmoid, d_sigmoid, DATA_TYPE)
# MODEL = Model(20, relu, d_relu, DATA_TYPE)
# Train the model with some training data
MAX_EPOCHS = 2000
TRAINING_SUBSET_SIZE = len(TRAIN_DATA)
PATIENCE = 50
PATIENCE = 200
print TRAINING_SUBSET_SIZE
@@ -258,7 +258,7 @@ for epoch in range(MAX_EPOCHS):
# Apply backprop with minibatch
BATCH_SIZE = 4
LEARNING_RATE = 0.005
LEARNING_RATE = 0.05
for i in range(0, len(training_subset), BATCH_SIZE):
batch = training_subset[i:min(i + BATCH_SIZE, len(training_subset))]
MODEL.backward_minibatch(batch, LEARNING_RATE)