.
This commit is contained in:
10
network.py
10
network.py
@@ -10,11 +10,11 @@ DATA_TYPE = np.float32
|
||||
|
||||
|
||||
def dataset_get_sin():
|
||||
NUM = 1000
|
||||
NUM = 200
|
||||
RATIO = 0.7
|
||||
SPLIT = int(NUM * RATIO)
|
||||
data = np.zeros((NUM, 2), DATA_TYPE)
|
||||
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
|
||||
data[:, 0] = np.linspace(0.0, 1 * np.pi, num=NUM) # inputs
|
||||
data[:, 1] = np.sin(data[:, 0]) # outputs
|
||||
npr.shuffle(data)
|
||||
training, test = data[:SPLIT, :], data[SPLIT:, :]
|
||||
@@ -231,13 +231,13 @@ def evaluate(model, samples):
|
||||
TRAIN_DATA, TEST_DATA = dataset_get_sin()
|
||||
# TRAIN_DATA, TEST_DATA = dataset_get_linear()
|
||||
|
||||
MODEL = Model(10, sigmoid, d_sigmoid, DATA_TYPE)
|
||||
MODEL = Model(8, sigmoid, d_sigmoid, DATA_TYPE)
|
||||
# MODEL = Model(20, relu, d_relu, DATA_TYPE)
|
||||
|
||||
# Train the model with some training data
|
||||
MAX_EPOCHS = 2000
|
||||
TRAINING_SUBSET_SIZE = len(TRAIN_DATA)
|
||||
PATIENCE = 50
|
||||
PATIENCE = 200
|
||||
|
||||
print TRAINING_SUBSET_SIZE
|
||||
|
||||
@@ -258,7 +258,7 @@ for epoch in range(MAX_EPOCHS):
|
||||
|
||||
# Apply backprop with minibatch
|
||||
BATCH_SIZE = 4
|
||||
LEARNING_RATE = 0.005
|
||||
LEARNING_RATE = 0.05
|
||||
for i in range(0, len(training_subset), BATCH_SIZE):
|
||||
batch = training_subset[i:min(i + BATCH_SIZE, len(training_subset))]
|
||||
MODEL.backward_minibatch(batch, LEARNING_RATE)
|
||||
|
Reference in New Issue
Block a user