This commit is contained in:
Carl Pearson
2016-11-16 14:02:16 -06:00
parent 7bc3ed028f
commit 23bf172b96
2 changed files with 54 additions and 23 deletions

View File

@@ -1,6 +1,7 @@
import numpy as np
import numpy.random as npr
import random
from sklearn import preprocessing
import matplotlib.pyplot as plt
@@ -9,7 +10,7 @@ DATA_TYPE = np.float32
def dataset_get_sin():
NUM = 1000
RATIO = 0.8
RATIO = 0.5
SPLIT = int(NUM * RATIO)
data = np.zeros((NUM, 2), DATA_TYPE)
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
@@ -39,7 +40,7 @@ def relu(x):
def d_relu(x):
res = x
res[res >= 0] = 1
res[res < 0] = 0
res[res < 0] = 0.01
return res
@@ -60,15 +61,15 @@ def L(x, y):
class Model(object):
def __init__(self, layer_size, h, dh, data_type):
self.w1 = npr.rand(layer_size).astype(data_type)
self.b1 = npr.rand(layer_size).astype(data_type)
self.w2 = npr.rand(1, layer_size).astype(data_type)
self.b2 = npr.rand(1).astype(data_type)
self.w1 = npr.uniform(-1, 1, layer_size)
self.b1 = npr.uniform(-1, 1, layer_size)
self.w2 = npr.uniform(-1, 1, (1, layer_size))
self.b2 = npr.uniform(-1, 1, 1)
self.w1 /= np.sum(self.w1)
self.w2 /= np.sum(self.w2)
self.b1 /= np.sum(self.b1)
self.b2 /= np.sum(self.b2)
self.w1 = preprocessing.scale(self.w1)
self.w2 = preprocessing.scale(self.w2)
self.b1 = preprocessing.scale(self.b1)
self.b2 = preprocessing.scale(self.b2)
self.h = h
self.dh = dh
@@ -126,7 +127,6 @@ class Model(object):
return self.dLdf(x, y) * np.sum(self.dfda() * self.dadz1(x) * self.dz1db1())
def backward(self, training_samples, ETA):
"""Do backpropagation with stochastic gradient descent on the model using training_samples"""
for sample in training_samples:
sample_input = sample[0]
sample_output = sample[1]
@@ -139,6 +139,29 @@ class Model(object):
self.b1 -= ETA * b1_grad
self.w2 -= ETA * w2_grad
self.w1 -= ETA * w1_grad
return
def backward_minibatch(self, batch, ETA):
b2_grad = np.zeros(self.b2.shape)
b1_grad = np.zeros(self.b1.shape)
w2_grad = np.zeros(self.w2.shape)
w1_grad = np.zeros(self.w1.shape)
for sample in batch:
sample_input = sample[0]
sample_output = sample[1]
b2_grad += self.dLdb2(sample_input, sample_output)
w2_grad += self.dLdw2(sample_input, sample_output)
b1_grad += self.dLdb1(sample_input, sample_output)
w1_grad += self.dLdw1(sample_input, sample_output)
self.b2 -= ETA * b2_grad / len(batch)
self.b1 -= ETA * b1_grad / len(batch)
self.w2 -= ETA * w2_grad / len(batch)
self.w1 -= ETA * w1_grad / len(batch)
return
@@ -154,12 +177,12 @@ def evaluate(model, samples):
TRAIN_DATA, TEST_DATA = dataset_get_sin()
# TRAIN_DATA, TEST_DATA = dataset_get_linear()
MODEL = Model(6, sigmoid, d_sigmoid, DATA_TYPE)
MODEL = Model(10, sigmoid, d_sigmoid, DATA_TYPE)
# MODEL = Model(10, relu, d_relu, DATA_TYPE)
# Train the model with some training data
TRAINING_ITERS = 500
LEARNING_RATE = 0.006
TRAINING_ITERS = 1000
LEARNING_RATE = 0.005
TRAINING_SUBSET_SIZE = len(TRAIN_DATA)
print TRAINING_SUBSET_SIZE
@@ -174,7 +197,14 @@ for training_iter in range(TRAINING_ITERS):
random.shuffle(training_subset)
# Apply backpropagation
MODEL.backward(training_subset, LEARNING_RATE)
# MODEL.backward(training_subset, LEARNING_RATE)
# Apply backprop with minibatch
BATCH_SIZE = 2
for i in range(0, len(training_subset), BATCH_SIZE):
batch = training_subset[i:min(i+BATCH_SIZE, len(training_subset))]
# print batch
MODEL.backward_minibatch(batch, LEARNING_RATE)
# Evaluate accuracy against training data
training_rate = evaluate(MODEL, training_subset)
@@ -194,11 +224,11 @@ TEST_OUTPUT = np.vectorize(MODEL.f)(TEST_DATA[:, 0])
TRAIN_OUTPUT = np.vectorize(MODEL.f)(TRAIN_DATA[:, 0])
scatter_train, = plt.plot(
TRAIN_DATA[:, 0], TRAIN_DATA[:, 1], 'ro', label="Training data")
TRAIN_DATA[:, 0], TRAIN_DATA[:, 1], 'ro', label="Real Data")
scatter_train_out, = plt.plot(
TRAIN_DATA[:, 0], TRAIN_OUTPUT, 'go', label="Training output")
TRAIN_DATA[:, 0], TRAIN_OUTPUT, 'go', label="Network output on training data")
scatter_test_out, = plt.plot(
TEST_DATA[:, 0], TEST_OUTPUT, 'bo', label="Test output")
TEST_DATA[:, 0], TEST_OUTPUT, 'bo', label="Network output on test data")
plt.legend(handles=[scatter_train, scatter_train_out, scatter_test_out])
plt.show()