hyperparams

This commit is contained in:
Carl Pearson
2016-11-16 15:53:45 -06:00
parent 23bf172b96
commit 8850a53f5a

View File

@@ -13,7 +13,7 @@ def dataset_get_sin():
RATIO = 0.5
SPLIT = int(NUM * RATIO)
data = np.zeros((NUM, 2), DATA_TYPE)
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
data[:, 0] = np.linspace(0.0, 4 * np.pi, num=NUM) # inputs
data[:, 1] = np.sin(data[:, 0]) # outputs
npr.shuffle(data)
training, test = data[:SPLIT, :], data[SPLIT:, :]
@@ -61,33 +61,30 @@ def L(x, y):
class Model(object):
def __init__(self, layer_size, h, dh, data_type):
self.w1 = npr.uniform(-1, 1, layer_size)
self.b1 = npr.uniform(-1, 1, layer_size)
self.w2 = npr.uniform(-1, 1, (1, layer_size))
self.b2 = npr.uniform(-1, 1, 1)
self.w1 = npr.uniform(0, 1, layer_size)
self.b1 = npr.uniform(0, 1, layer_size)
self.w2 = npr.uniform(0, 1, (1, layer_size))
self.b2 = npr.uniform(0, 1, 1)
self.w1 = preprocessing.scale(self.w1)
self.w2 = preprocessing.scale(self.w2)
self.b1 = preprocessing.scale(self.b1)
self.b2 = preprocessing.scale(self.b2)
# self.w1 = preprocessing.scale(self.w1)
# self.w2 = preprocessing.scale(self.w2)
# self.b1 = preprocessing.scale(self.b1)
# self.b2 = preprocessing.scale(self.b2)
self.h = h
self.dh = dh
def z1(self, x):
return self.w1 * x + self.b1
def a(self, x):
return self.h(self.z1(x))
def f(self, x):
return self.w2.dot(self.a(x)) + self.b2
def dLdf(self, x, y):
return 2.0 * (self.f(x) - y)
return -2.0 * (y - self.f(x))
def dfdb2(self):
return np.array([1.0])
@@ -181,8 +178,8 @@ MODEL = Model(10, sigmoid, d_sigmoid, DATA_TYPE)
# MODEL = Model(10, relu, d_relu, DATA_TYPE)
# Train the model with some training data
TRAINING_ITERS = 1000
LEARNING_RATE = 0.005
TRAINING_ITERS = 5000
LEARNING_RATE = 0.002
TRAINING_SUBSET_SIZE = len(TRAIN_DATA)
print TRAINING_SUBSET_SIZE
@@ -200,7 +197,7 @@ for training_iter in range(TRAINING_ITERS):
# MODEL.backward(training_subset, LEARNING_RATE)
# Apply backprop with minibatch
BATCH_SIZE = 2
BATCH_SIZE = 4
for i in range(0, len(training_subset), BATCH_SIZE):
batch = training_subset[i:min(i+BATCH_SIZE, len(training_subset))]
# print batch