Updates
This commit is contained in:
85
network.py
85
network.py
@@ -8,11 +8,11 @@ DATA_TYPE = np.float32
|
||||
|
||||
|
||||
def dataset_get_sin():
|
||||
NUM = 100
|
||||
NUM = 1000
|
||||
RATIO = 0.8
|
||||
SPLIT = int(NUM * RATIO)
|
||||
data = np.zeros((NUM, 2), DATA_TYPE)
|
||||
data[:, 0] = np.linspace(0.0, 4.0 * np.pi, num=NUM) # inputs
|
||||
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
|
||||
data[:, 1] = np.sin(data[:, 0]) # outputs
|
||||
npr.shuffle(data)
|
||||
training, test = data[:SPLIT, :], data[SPLIT:, :]
|
||||
@@ -24,7 +24,7 @@ def dataset_get_linear():
|
||||
RATIO = 0.8
|
||||
SPLIT = int(NUM * RATIO)
|
||||
data = np.zeros((NUM, 2), DATA_TYPE)
|
||||
data[:, 0] = np.linspace(0.0, 4.0 * np.pi, num=NUM) # inputs
|
||||
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
|
||||
data[:, 1] = 2 * data[:, 0] # outputs
|
||||
npr.shuffle(data)
|
||||
training, test = data[:SPLIT, :], data[SPLIT:, :]
|
||||
@@ -32,14 +32,14 @@ def dataset_get_linear():
|
||||
|
||||
|
||||
def relu(x):
|
||||
"""Apply a rectified linear until to x"""
|
||||
return np.maximum(x, 0, x)
|
||||
"""Apply a rectified linear unit to x"""
|
||||
return np.maximum(0, x)
|
||||
|
||||
|
||||
def d_relu(x):
|
||||
res = x
|
||||
res[res < 0] = 0
|
||||
res[res >= 0] = 1
|
||||
res[res < 0] = 0
|
||||
return res
|
||||
|
||||
|
||||
@@ -59,7 +59,7 @@ def L(x, y):
|
||||
|
||||
class Model(object):
|
||||
|
||||
def __init__(self, layer_size, data_type):
|
||||
def __init__(self, layer_size, h, dh, data_type):
|
||||
self.w1 = npr.rand(layer_size).astype(data_type)
|
||||
self.b1 = npr.rand(layer_size).astype(data_type)
|
||||
self.w2 = npr.rand(1, layer_size).astype(data_type)
|
||||
@@ -70,70 +70,60 @@ class Model(object):
|
||||
self.b1 /= np.sum(self.b1)
|
||||
self.b2 /= np.sum(self.b2)
|
||||
|
||||
def h(self, vec):
|
||||
return relu(vec)
|
||||
self.h = h
|
||||
self.dh = dh
|
||||
|
||||
def dh(self, vec):
|
||||
return d_relu(vec)
|
||||
def z1(self, x):
|
||||
|
||||
def Z1(self, x):
|
||||
"""Apply the first linear layer to an input x"""
|
||||
return self.w1 * x + self.b1
|
||||
|
||||
def A(self, x):
|
||||
"""Compute A for an input x"""
|
||||
return self.h(self.Z1(x))
|
||||
def a(self, x):
|
||||
|
||||
def Z2(self, x):
|
||||
"""Compute Z2 for an input x"""
|
||||
return self.w2.dot(self.A(x)) + self.b2
|
||||
return self.h(self.z1(x))
|
||||
|
||||
def forward(self, x):
|
||||
"""Evaluate the model on an input x"""
|
||||
return self.Z2(x)
|
||||
def f(self, x):
|
||||
|
||||
return self.w2.dot(self.a(x)) + self.b2
|
||||
|
||||
def dLdf(self, x, y):
|
||||
"""Compute dL/df for an input x"""
|
||||
return 2.0 * (self.forward(x) - y)
|
||||
return 2.0 * (self.f(x) - y)
|
||||
|
||||
def dfdb2(self):
|
||||
return 1.0
|
||||
return np.array([1.0])
|
||||
|
||||
def dLdb2(self, x, y):
|
||||
"""Evaluate dL/db2 for an input x and expected output y"""
|
||||
return self.dLdf(x, y) * self.dfdb2()
|
||||
|
||||
def dfdw2(self, x):
|
||||
"""Evaluate df/dw2 using an input sample x"""
|
||||
return self.A(x)
|
||||
return np.sum(self.a(x))
|
||||
|
||||
def dfda(self):
|
||||
return np.sum(self.w2)
|
||||
def dfda(self): # how f changes with ith element of a
|
||||
return self.w2
|
||||
|
||||
def dadz(self, x):
|
||||
def dadz1(self, x): # how a[i] changes with z1[i]
|
||||
"""Compute da/dz1 for an input x"""
|
||||
return self.dh(self.Z1(x))
|
||||
return self.dh(self.z1(x))
|
||||
|
||||
def dLdz(self, x, y):
|
||||
def dLdz1(self, x, y):
|
||||
"""Compute dL/dz1 for an input x and expected output y"""
|
||||
return self.dLdf(x, y) * self.dfda() * self.dadz(x)
|
||||
return self.dLdf(x, y) * np.sum(self.dfda() * self.dadz1(x))
|
||||
|
||||
def dzdw1(self, x):
|
||||
def dz1dw1(self, x):
|
||||
return x
|
||||
|
||||
def dLdw1(self, x, y):
|
||||
"""Compute dL/dw1 for an input x and expected output y"""
|
||||
return self.dLdz(x, y) * self.dzdw1(x)
|
||||
return self.dLdf(x, y) * np.sum(self.dfda() * self.dadz1(x) * self.dz1dw1(x))
|
||||
|
||||
def dLdw2(self, x, y):
|
||||
"""Compute dL/dw2 for an input x and expected output y"""
|
||||
return self.dLdf(x, y) * self.dfdw2(x)
|
||||
|
||||
def dzdb1(self):
|
||||
return 1.0
|
||||
def dz1db1(self):
|
||||
return np.ones(self.b1.shape)
|
||||
|
||||
def dLdb1(self, x, y):
|
||||
return self.dLdz(x, y) * self.dzdb1()
|
||||
return self.dLdf(x, y) * np.sum(self.dfda() * self.dadz1(x) * self.dz1db1())
|
||||
|
||||
def backward(self, training_samples, ETA):
|
||||
"""Do backpropagation with stochastic gradient descent on the model using training_samples"""
|
||||
@@ -156,19 +146,20 @@ def evaluate(model, samples):
|
||||
"""Report the loss function over the data"""
|
||||
loss_acc = 0.0
|
||||
for sample in samples:
|
||||
guess = model.forward(sample[0])
|
||||
guess = model.f(sample[0])
|
||||
actual = sample[1]
|
||||
loss_acc += L(guess, actual)
|
||||
return loss_acc / len(samples)
|
||||
|
||||
# TRAIN_DATA, TEST_DATA = dataset_get_sin()
|
||||
TRAIN_DATA, TEST_DATA = dataset_get_linear()
|
||||
TRAIN_DATA, TEST_DATA = dataset_get_sin()
|
||||
# TRAIN_DATA, TEST_DATA = dataset_get_linear()
|
||||
|
||||
MODEL = Model(10, DATA_TYPE)
|
||||
MODEL = Model(6, sigmoid, d_sigmoid, DATA_TYPE)
|
||||
# MODEL = Model(10, relu, d_relu, DATA_TYPE)
|
||||
|
||||
# Train the model with some training data
|
||||
TRAINING_ITERS = 100
|
||||
LEARNING_RATE = 0.001
|
||||
TRAINING_ITERS = 500
|
||||
LEARNING_RATE = 0.006
|
||||
TRAINING_SUBSET_SIZE = len(TRAIN_DATA)
|
||||
|
||||
print TRAINING_SUBSET_SIZE
|
||||
@@ -199,8 +190,8 @@ for training_iter in range(TRAINING_ITERS):
|
||||
else:
|
||||
print ""
|
||||
|
||||
TEST_OUTPUT = np.vectorize(MODEL.forward)(TEST_DATA[:, 0])
|
||||
TRAIN_OUTPUT = np.vectorize(MODEL.forward)(TRAIN_DATA[:, 0])
|
||||
TEST_OUTPUT = np.vectorize(MODEL.f)(TEST_DATA[:, 0])
|
||||
TRAIN_OUTPUT = np.vectorize(MODEL.f)(TRAIN_DATA[:, 0])
|
||||
|
||||
scatter_train, = plt.plot(
|
||||
TRAIN_DATA[:, 0], TRAIN_DATA[:, 1], 'ro', label="Training data")
|
||||
|
Reference in New Issue
Block a user