Files
ece408-backprop-demo/network.py
Carl Pearson 387ee49c76 .
2016-11-16 12:01:12 -06:00

205 lines
5.6 KiB
Python

import numpy as np
import numpy.random as npr
import random
import matplotlib.pyplot as plt
DATA_TYPE = np.float32
def dataset_get_sin():
NUM = 1000
RATIO = 0.8
SPLIT = int(NUM * RATIO)
data = np.zeros((NUM, 2), DATA_TYPE)
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
data[:, 1] = np.sin(data[:, 0]) # outputs
npr.shuffle(data)
training, test = data[:SPLIT, :], data[SPLIT:, :]
return training, test
def dataset_get_linear():
NUM = 100
RATIO = 0.8
SPLIT = int(NUM * RATIO)
data = np.zeros((NUM, 2), DATA_TYPE)
data[:, 0] = np.linspace(0.0, 2 * np.pi, num=NUM) # inputs
data[:, 1] = 2 * data[:, 0] # outputs
npr.shuffle(data)
training, test = data[:SPLIT, :], data[SPLIT:, :]
return training, test
def relu(x):
"""Apply a rectified linear unit to x"""
return np.maximum(0, x)
def d_relu(x):
res = x
res[res >= 0] = 1
res[res < 0] = 0
return res
def sigmoid(vec):
"""Apply sigmoid to vec"""
return 1.0 / (1.0 + np.exp(-1 * vec))
def d_sigmoid(vec):
s = sigmoid(vec)
return s * (1 - s)
def L(x, y):
return (x - y) * (x - y)
class Model(object):
def __init__(self, layer_size, h, dh, data_type):
self.w1 = npr.rand(layer_size).astype(data_type)
self.b1 = npr.rand(layer_size).astype(data_type)
self.w2 = npr.rand(1, layer_size).astype(data_type)
self.b2 = npr.rand(1).astype(data_type)
self.w1 /= np.sum(self.w1)
self.w2 /= np.sum(self.w2)
self.b1 /= np.sum(self.b1)
self.b2 /= np.sum(self.b2)
self.h = h
self.dh = dh
def z1(self, x):
return self.w1 * x + self.b1
def a(self, x):
return self.h(self.z1(x))
def f(self, x):
return self.w2.dot(self.a(x)) + self.b2
def dLdf(self, x, y):
return 2.0 * (self.f(x) - y)
def dfdb2(self):
return np.array([1.0])
def dLdb2(self, x, y):
return self.dLdf(x, y) * self.dfdb2()
def dfdw2(self, x): # how each entry of f changes wrt each entry of w2
return self.a(x)
def dfda(self): # how f changes with ith element of a
return self.w2
def dadz1(self, x): # how a[i] changes with z1[i]
"""Compute da/dz1 for an input x"""
return self.dh(self.z1(x))
def dLdz1(self, x, y):
"""Compute dL/dz1 for an input x and expected output y"""
return self.dLdf(x, y) * np.dot(self.dfda(), self.dadz1(x))
def dz1dw1(self, x):
return x * self.w1
def dLdw1(self, x, y):
"""Compute dL/dw1 for an input x and expected output y"""
return self.dLdf(x, y) * np.sum(self.dfda() * self.dadz1(x) * self.dz1dw1(x))
def dLdw2(self, x, y):
"""Compute dL/dw2 for an input x and expected output y"""
return self.dLdf(x, y) * self.dfdw2(x)
def dz1db1(self):
return np.ones(self.b1.shape)
def dLdb1(self, x, y):
return self.dLdf(x, y) * np.sum(self.dfda() * self.dadz1(x) * self.dz1db1())
def backward(self, training_samples, ETA):
"""Do backpropagation with stochastic gradient descent on the model using training_samples"""
for sample in training_samples:
sample_input = sample[0]
sample_output = sample[1]
b2_grad = self.dLdb2(sample_input, sample_output)
w2_grad = self.dLdw2(sample_input, sample_output)
b1_grad = self.dLdb1(sample_input, sample_output)
w1_grad = self.dLdw1(sample_input, sample_output)
self.b2 -= ETA * b2_grad
self.b1 -= ETA * b1_grad
self.w2 -= ETA * w2_grad
self.w1 -= ETA * w1_grad
return
def evaluate(model, samples):
"""Report the loss function over the data"""
loss_acc = 0.0
for sample in samples:
guess = model.f(sample[0])
actual = sample[1]
loss_acc += L(guess, actual)
return loss_acc / len(samples)
TRAIN_DATA, TEST_DATA = dataset_get_sin()
# TRAIN_DATA, TEST_DATA = dataset_get_linear()
MODEL = Model(6, sigmoid, d_sigmoid, DATA_TYPE)
# MODEL = Model(10, relu, d_relu, DATA_TYPE)
# Train the model with some training data
TRAINING_ITERS = 500
LEARNING_RATE = 0.006
TRAINING_SUBSET_SIZE = len(TRAIN_DATA)
print TRAINING_SUBSET_SIZE
best_rate = np.inf
rates = [["iter", "training_rate", "test_rate"]]
for training_iter in range(TRAINING_ITERS):
# Create a training sample
training_subset_indices = npr.choice(
range(len(TRAIN_DATA)), size=TRAINING_SUBSET_SIZE, replace=False)
training_subset = [TRAIN_DATA[i] for i in training_subset_indices]
random.shuffle(training_subset)
# Apply backpropagation
MODEL.backward(training_subset, LEARNING_RATE)
# Evaluate accuracy against training data
training_rate = evaluate(MODEL, training_subset)
test_rate = evaluate(MODEL, TEST_DATA)
rates += [[training_iter, training_rate, test_rate]]
print training_iter, "positive rates:", training_rate, test_rate,
# If it's the best one so far, store it
if training_rate < best_rate:
print "(new best)"
best_rate = training_rate
else:
print ""
TEST_OUTPUT = np.vectorize(MODEL.f)(TEST_DATA[:, 0])
TRAIN_OUTPUT = np.vectorize(MODEL.f)(TRAIN_DATA[:, 0])
scatter_train, = plt.plot(
TRAIN_DATA[:, 0], TRAIN_DATA[:, 1], 'ro', label="Training data")
scatter_train_out, = plt.plot(
TRAIN_DATA[:, 0], TRAIN_OUTPUT, 'go', label="Training output")
scatter_test_out, = plt.plot(
TEST_DATA[:, 0], TEST_OUTPUT, 'bo', label="Test output")
plt.legend(handles=[scatter_train, scatter_train_out, scatter_test_out])
plt.show()