Added Astaroth 2.0
This commit is contained in:
228
acc/pseudodisk/stencil_process_gravx.sps
Normal file
228
acc/pseudodisk/stencil_process_gravx.sps
Normal file
@@ -0,0 +1,228 @@
|
||||
#define LINDUCTION (1)
|
||||
#define LENTROPY (1)
|
||||
|
||||
|
||||
// Declare uniforms (i.e. device constants)
|
||||
uniform Scalar cs2_sound;
|
||||
uniform Scalar nu_visc;
|
||||
uniform Scalar cp_sound;
|
||||
uniform Scalar mu0;
|
||||
uniform Scalar eta;
|
||||
uniform Scalar gamma;
|
||||
uniform Scalar chi;
|
||||
uniform Scalar zeta;
|
||||
|
||||
uniform int nx_min;
|
||||
uniform int ny_min;
|
||||
uniform int nz_min;
|
||||
uniform int nx;
|
||||
uniform int ny;
|
||||
uniform int nz;
|
||||
|
||||
uniform Scalar xorig;
|
||||
uniform Scalar yorig;
|
||||
uniform Scalar zorig;
|
||||
|
||||
//Star position
|
||||
uniform Scalar star_pos_x;
|
||||
uniform Scalar star_pos_z;
|
||||
uniform Scalar GM_star;
|
||||
|
||||
//Needed for gravity
|
||||
uniform Scalar dsx;
|
||||
uniform Scalar dsy;
|
||||
uniform Scalar dsz;
|
||||
uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
// Gravitation for in negative x-direction.
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
Vector star_pos = (Vector){star_pos_x, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
|
||||
const Scalar RR = vertex_pos.x - star_pos.x;
|
||||
|
||||
const Scalar G_force_abs = GM_star / (RR*RR); // Force per unit mass;
|
||||
|
||||
Vector G_force = (Vector){ - G_force_abs,
|
||||
AcReal(0.0),
|
||||
AcReal(0.0)};
|
||||
|
||||
return G_force;
|
||||
}
|
||||
|
||||
#if LENTROPY
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
|
||||
|
||||
mom = mom - cs2_sound * (Scalar(1.) / cp_sound) * gradient(ss);
|
||||
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
const Vector j = (Scalar(1.) / mu0) * (grad_div - lap);
|
||||
const Vector B = curl(aa);
|
||||
mom = mom + (Scalar(1.) / exp(value(lnrho))) * cross(j, B);
|
||||
|
||||
mom = mom + grav_force_line(vertexIdx);
|
||||
|
||||
return mom;
|
||||
}
|
||||
#else
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
|
||||
|
||||
mom = mom + grav_force_line(vertexIdx);
|
||||
|
||||
return mom;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
|
||||
const Vector B = curl(aa);
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
|
||||
// Note, mu0 is cancelled out
|
||||
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
|
||||
|
||||
return ind;
|
||||
}
|
||||
|
||||
|
||||
#if LENTROPY
|
||||
Scalar
|
||||
lnT( in Scalar ss, in Scalar lnrho) {
|
||||
const Scalar lnT = LNT0 + value(ss) / cp_sound +
|
||||
(gamma - AcReal(1.)) * (value(lnrho) - LNRHO0);
|
||||
return lnT;
|
||||
}
|
||||
|
||||
// Nabla dot (K nabla T) / (rho T)
|
||||
Scalar
|
||||
heat_conduction( in Scalar ss, in Scalar lnrho) {
|
||||
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = (Vector) {
|
||||
0,
|
||||
0,
|
||||
0
|
||||
}; // TODO not used
|
||||
|
||||
const Scalar first_term = gamma * inv_cp_sound * laplace(ss) +
|
||||
(gamma - AcReal(1.)) * laplace(lnrho);
|
||||
const Vector second_term = gamma * inv_cp_sound * gradient(ss) +
|
||||
(gamma - AcReal(1.)) * gradient(lnrho);
|
||||
const Vector third_term = gamma * (inv_cp_sound * gradient(ss) +
|
||||
gradient(lnrho)) + grad_ln_chi;
|
||||
|
||||
return cp_sound * chi * (first_term + dot(second_term, third_term));
|
||||
}
|
||||
|
||||
Scalar
|
||||
heating(const int i, const int j, const int k) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
Scalar
|
||||
entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa) {
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
// nabla x nabla x A / mu0 = nabla(nabla dot A) - nabla^2(A)
|
||||
const Vector j = gradient_of_divergence(aa) - laplace_vec(aa);
|
||||
|
||||
const Scalar inv_pT = AcReal(1.) / (exp(value(lnrho)) + exp(lnT(ss, lnrho)));
|
||||
|
||||
return -dot(value(uu), gradient(ss)) +
|
||||
inv_pT * (H_CONST - C_CONST +
|
||||
eta * mu0 * dot(j, j) +
|
||||
AcReal(2.) * exp(value(lnrho)) * nu_visc * contract(S) +
|
||||
zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu)
|
||||
) + heat_conduction(ss, lnrho);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
|
||||
|
||||
#if LINDUCTION
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
#endif
|
||||
|
||||
#if LENTROPY
|
||||
in Scalar ss = VTXBUF_ENTROPY;
|
||||
out Scalar out_ss = VTXBUF_ENTROPY;
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
solve(Scalar dt) {
|
||||
WRITE(out_lnrho, RK3(out_lnrho, lnrho, continuity(uu, lnrho), dt));
|
||||
|
||||
#if LINDUCTION
|
||||
WRITE(out_aa, RK3(out_aa, aa, induction(uu, aa), dt));
|
||||
#endif
|
||||
|
||||
|
||||
#if LENTROPY
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, ss, aa, vertexIdx), dt));
|
||||
WRITE(out_ss, RK3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt));
|
||||
#else
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
||||
#endif
|
||||
}
|
169
acc/pseudodisk/stencil_process_isotherm_gravx.sps
Normal file
169
acc/pseudodisk/stencil_process_isotherm_gravx.sps
Normal file
@@ -0,0 +1,169 @@
|
||||
|
||||
// Declare uniforms (i.e. device constants)
|
||||
uniform Scalar cs2_sound;
|
||||
uniform Scalar nu_visc;
|
||||
uniform Scalar cp_sound;
|
||||
uniform Scalar mu0;
|
||||
uniform Scalar eta;
|
||||
uniform Scalar gamma;
|
||||
uniform Scalar chi;
|
||||
uniform Scalar zeta;
|
||||
|
||||
uniform Scalar xorig;
|
||||
uniform Scalar yorig;
|
||||
uniform Scalar zorig;
|
||||
|
||||
//Star position
|
||||
uniform Scalar star_pos_x;
|
||||
uniform Scalar star_pos_z;
|
||||
uniform Scalar GM_star;
|
||||
|
||||
uniform int nx_min;
|
||||
uniform int ny_min;
|
||||
uniform int nz_min;
|
||||
uniform int nx;
|
||||
uniform int ny;
|
||||
uniform int nz;
|
||||
|
||||
//Needed for gravity
|
||||
uniform Scalar dsx;
|
||||
uniform Scalar dsy;
|
||||
uniform Scalar dsz;
|
||||
uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
|
||||
// "Line-like" gravity with no y-component
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
Vector star_pos = (Vector){star_pos_x, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
|
||||
const Scalar RR = vertex_pos.x - star_pos.x;
|
||||
|
||||
const Scalar G_force_abs = GM_star / (RR*RR); // Force per unit mass;
|
||||
|
||||
Vector G_force = (Vector){ - G_force_abs,
|
||||
AcReal(0.0),
|
||||
AcReal(0.0)};
|
||||
|
||||
return G_force;
|
||||
}
|
||||
|
||||
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
||||
+ grav_force_line(vertexIdx);
|
||||
|
||||
|
||||
return mom;
|
||||
}
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
|
||||
const Vector B = curl(aa);
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
|
||||
// Note, mu0 is cancelled out
|
||||
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
|
||||
|
||||
return ind;
|
||||
}
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
|
||||
#if LINDUCTION
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
solve(Scalar dt) {
|
||||
WRITE(out_lnrho, RK3(out_lnrho, lnrho, continuity(uu, lnrho), dt));
|
||||
|
||||
#if LINDUCTION
|
||||
WRITE(out_aa, RK3(out_aa, aa, induction(uu, aa), dt));
|
||||
#endif
|
||||
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
174
acc/pseudodisk/stencil_process_isotherm_linegrav.sps
Normal file
174
acc/pseudodisk/stencil_process_isotherm_linegrav.sps
Normal file
@@ -0,0 +1,174 @@
|
||||
|
||||
// Declare uniforms (i.e. device constants)
|
||||
uniform Scalar cs2_sound;
|
||||
uniform Scalar nu_visc;
|
||||
uniform Scalar cp_sound;
|
||||
uniform Scalar mu0;
|
||||
uniform Scalar eta;
|
||||
uniform Scalar gamma;
|
||||
uniform Scalar chi;
|
||||
uniform Scalar zeta;
|
||||
|
||||
uniform Scalar xorig;
|
||||
uniform Scalar yorig;
|
||||
uniform Scalar zorig;
|
||||
|
||||
//Star position
|
||||
uniform Scalar star_pos_x;
|
||||
uniform Scalar star_pos_z;
|
||||
uniform Scalar GM_star;
|
||||
|
||||
uniform int nx_min;
|
||||
uniform int ny_min;
|
||||
uniform int nz_min;
|
||||
uniform int nx;
|
||||
uniform int ny;
|
||||
uniform int nz;
|
||||
|
||||
//Needed for gravity
|
||||
uniform Scalar dsx;
|
||||
uniform Scalar dsy;
|
||||
uniform Scalar dsz;
|
||||
uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
|
||||
// "Line-like" gravity with no y-component
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
//Vector star_pos = (Vector){star_pos_x - xorig, dsy * vertexIdx.y - yorig, star_pos_z - zorig};
|
||||
Vector star_pos = (Vector){star_pos_x, dsy * vertexIdx.y - yorig, star_pos_z};
|
||||
//LIKE THIS: Vector star_pos = (Vector){star_pos_x, 0.0, star_pos_z};
|
||||
|
||||
const Scalar RR = distance(star_pos, vertex_pos);
|
||||
|
||||
const Scalar G_force_abs = GM_star / (RR*RR); // Force per unit mass;
|
||||
//const Scalar G_force_abs = 1.0; // Simple temp. test;
|
||||
|
||||
Vector G_force = (Vector){ - G_force_abs*((vertex_pos.x-star_pos.x)/RR),
|
||||
AcReal(0.0),
|
||||
- G_force_abs*((vertex_pos.z-star_pos.z)/RR)};
|
||||
|
||||
//printf("G_force %e %e %e", G_force_abs.x, G_force_abs.y, G_force_abs.z)
|
||||
|
||||
return G_force;
|
||||
}
|
||||
|
||||
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu)
|
||||
+ grav_force_line(vertexIdx);
|
||||
|
||||
|
||||
return mom;
|
||||
}
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
|
||||
const Vector B = curl(aa);
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
|
||||
// Note, mu0 is cancelled out
|
||||
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
|
||||
|
||||
return ind;
|
||||
}
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
|
||||
#if LINDUCTION
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
solve(Scalar dt) {
|
||||
WRITE(out_lnrho, RK3(out_lnrho, lnrho, continuity(uu, lnrho), dt));
|
||||
|
||||
#if LINDUCTION
|
||||
WRITE(out_aa, RK3(out_aa, aa, induction(uu, aa), dt));
|
||||
#endif
|
||||
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
233
acc/pseudodisk/stencil_process_linegrav.sps
Normal file
233
acc/pseudodisk/stencil_process_linegrav.sps
Normal file
@@ -0,0 +1,233 @@
|
||||
#define LINDUCTION (1)
|
||||
#define LENTROPY (1)
|
||||
|
||||
|
||||
// Declare uniforms (i.e. device constants)
|
||||
uniform Scalar cs2_sound;
|
||||
uniform Scalar nu_visc;
|
||||
uniform Scalar cp_sound;
|
||||
uniform Scalar mu0;
|
||||
uniform Scalar eta;
|
||||
uniform Scalar gamma;
|
||||
uniform Scalar chi;
|
||||
uniform Scalar zeta;
|
||||
|
||||
uniform int nx_min;
|
||||
uniform int ny_min;
|
||||
uniform int nz_min;
|
||||
uniform int nx;
|
||||
uniform int ny;
|
||||
uniform int nz;
|
||||
|
||||
uniform Scalar xorig;
|
||||
uniform Scalar yorig;
|
||||
uniform Scalar zorig;
|
||||
|
||||
//Star position
|
||||
uniform Scalar star_pos_x;
|
||||
uniform Scalar star_pos_z;
|
||||
uniform Scalar GM_star;
|
||||
|
||||
//Needed for gravity
|
||||
uniform Scalar dsx;
|
||||
uniform Scalar dsy;
|
||||
uniform Scalar dsz;
|
||||
uniform Scalar inv_dsx;
|
||||
uniform Scalar inv_dsy;
|
||||
uniform Scalar inv_dsz;
|
||||
|
||||
Scalar
|
||||
distance_x(Vector a, Vector b)
|
||||
{
|
||||
return sqrt(dot(a-b, a-b));
|
||||
}
|
||||
|
||||
Vector
|
||||
value(in Vector uu)
|
||||
{
|
||||
return (Vector){value(uu.x), value(uu.y), value(uu.z)};
|
||||
}
|
||||
|
||||
Matrix
|
||||
gradients(in Vector uu)
|
||||
{
|
||||
return (Matrix){gradient(uu.x), gradient(uu.y), gradient(uu.z)};
|
||||
}
|
||||
|
||||
Scalar
|
||||
continuity(in Vector uu, in Scalar lnrho) {
|
||||
return -dot(value(uu), gradient(lnrho)) - divergence(uu);
|
||||
}
|
||||
|
||||
// "Line-like" gravity with no y-component
|
||||
Vector
|
||||
grav_force_line(const int3 vertexIdx)
|
||||
{
|
||||
Vector vertex_pos = (Vector){dsx * vertexIdx.x - xorig, dsy * vertexIdx.y - yorig, dsz * vertexIdx.z - zorig};
|
||||
//Vector star_pos = (Vector){star_pos_x - xorig, dsy * vertexIdx.y - yorig, star_pos_z - zorig};
|
||||
Vector star_pos = (Vector){star_pos_x, dsy * vertexIdx.y - yorig, star_pos_z};
|
||||
//LIKE THIS: Vector star_pos = (Vector){star_pos_x, 0.0, star_pos_z};
|
||||
|
||||
const Scalar RR = distance(star_pos, vertex_pos);
|
||||
|
||||
const Scalar G_force_abs = GM_star / (RR*RR); // Force per unit mass;
|
||||
//const Scalar G_force_abs = 1.0; // Simple temp. test;
|
||||
|
||||
Vector G_force = (Vector){ - G_force_abs*((vertex_pos.x-star_pos.x)/RR),
|
||||
AcReal(0.0),
|
||||
- G_force_abs*((vertex_pos.z-star_pos.z)/RR)};
|
||||
|
||||
//printf("G_force %e %e %e", G_force_abs.x, G_force_abs.y, G_force_abs.z)
|
||||
|
||||
return G_force;
|
||||
}
|
||||
|
||||
#if LENTROPY
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, in Scalar ss, in Vector aa, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
|
||||
|
||||
mom = mom - cs2_sound * (Scalar(1.) / cp_sound) * gradient(ss);
|
||||
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
const Vector j = (Scalar(1.) / mu0) * (grad_div - lap);
|
||||
const Vector B = curl(aa);
|
||||
mom = mom + (Scalar(1.) / exp(value(lnrho))) * cross(j, B);
|
||||
|
||||
mom = mom + grav_force_line(vertexIdx);
|
||||
|
||||
return mom;
|
||||
}
|
||||
#else
|
||||
Vector
|
||||
momentum(in Vector uu, in Scalar lnrho, const int3 vertexIdx) {
|
||||
Vector mom;
|
||||
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
mom = -mul(gradients(uu), value(uu)) -
|
||||
cs2_sound * gradient(lnrho) +
|
||||
nu_visc *
|
||||
(laplace_vec(uu) + Scalar(1. / 3.) * gradient_of_divergence(uu) +
|
||||
Scalar(2.) * mul(S, gradient(lnrho))) + zeta * gradient_of_divergence(uu);
|
||||
|
||||
mom = mom + grav_force_line(vertexIdx);
|
||||
|
||||
return mom;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
Vector
|
||||
induction(in Vector uu, in Vector aa) {
|
||||
// Note: We do (-nabla^2 A + nabla(nabla dot A)) instead of (nabla x (nabla
|
||||
// x A)) in order to avoid taking the first derivative twice (did the math,
|
||||
// yes this actually works. See pg.28 in arXiv:astro-ph/0109497)
|
||||
// u cross B - ETA * mu0 * (mu0^-1 * [- laplace A + grad div A ])
|
||||
const Vector B = curl(aa);
|
||||
const Vector grad_div = gradient_of_divergence(aa);
|
||||
const Vector lap = laplace_vec(aa);
|
||||
|
||||
// Note, mu0 is cancelled out
|
||||
const Vector ind = cross(value(uu), B) - eta * (grad_div - lap);
|
||||
|
||||
return ind;
|
||||
}
|
||||
|
||||
|
||||
#if LENTROPY
|
||||
Scalar
|
||||
lnT( in Scalar ss, in Scalar lnrho) {
|
||||
const Scalar lnT = LNT0 + value(ss) / cp_sound +
|
||||
(gamma - AcReal(1.)) * (value(lnrho) - LNRHO0);
|
||||
return lnT;
|
||||
}
|
||||
|
||||
// Nabla dot (K nabla T) / (rho T)
|
||||
Scalar
|
||||
heat_conduction( in Scalar ss, in Scalar lnrho) {
|
||||
const Scalar inv_cp_sound = AcReal(1.) / cp_sound;
|
||||
|
||||
const Vector grad_ln_chi = (Vector) {
|
||||
0,
|
||||
0,
|
||||
0
|
||||
}; // TODO not used
|
||||
|
||||
const Scalar first_term = gamma * inv_cp_sound * laplace(ss) +
|
||||
(gamma - AcReal(1.)) * laplace(lnrho);
|
||||
const Vector second_term = gamma * inv_cp_sound * gradient(ss) +
|
||||
(gamma - AcReal(1.)) * gradient(lnrho);
|
||||
const Vector third_term = gamma * (inv_cp_sound * gradient(ss) +
|
||||
gradient(lnrho)) + grad_ln_chi;
|
||||
|
||||
return cp_sound * chi * (first_term + dot(second_term, third_term));
|
||||
}
|
||||
|
||||
Scalar
|
||||
heating(const int i, const int j, const int k) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
Scalar
|
||||
entropy(in Scalar ss, in Vector uu, in Scalar lnrho, in Vector aa) {
|
||||
const Matrix S = stress_tensor(uu);
|
||||
|
||||
// nabla x nabla x A / mu0 = nabla(nabla dot A) - nabla^2(A)
|
||||
const Vector j = gradient_of_divergence(aa) - laplace_vec(aa);
|
||||
|
||||
const Scalar inv_pT = AcReal(1.) / (exp(value(lnrho)) + exp(lnT(ss, lnrho)));
|
||||
|
||||
return -dot(value(uu), gradient(ss)) +
|
||||
inv_pT * (H_CONST - C_CONST +
|
||||
eta * mu0 * dot(j, j) +
|
||||
AcReal(2.) * exp(value(lnrho)) * nu_visc * contract(S) +
|
||||
zeta * exp(value(lnrho)) * divergence(uu) * divergence(uu)
|
||||
) + heat_conduction(ss, lnrho);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Declare input and output arrays using locations specified in the
|
||||
// array enum in astaroth.h
|
||||
in Scalar lnrho = VTXBUF_LNRHO;
|
||||
out Scalar out_lnrho = VTXBUF_LNRHO;
|
||||
|
||||
in Vector uu = (int3) {VTXBUF_UUX, VTXBUF_UUY, VTXBUF_UUZ};
|
||||
out Vector out_uu = (int3) {VTXBUF_UUX,VTXBUF_UUY,VTXBUF_UUZ};
|
||||
|
||||
|
||||
#if LINDUCTION
|
||||
in Vector aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
out Vector out_aa = (int3) {VTXBUF_AX,VTXBUF_AY,VTXBUF_AZ};
|
||||
#endif
|
||||
|
||||
#if LENTROPY
|
||||
in Scalar ss = VTXBUF_ENTROPY;
|
||||
out Scalar out_ss = VTXBUF_ENTROPY;
|
||||
#endif
|
||||
|
||||
Kernel void
|
||||
solve(Scalar dt) {
|
||||
WRITE(out_lnrho, RK3(out_lnrho, lnrho, continuity(uu, lnrho), dt));
|
||||
|
||||
#if LINDUCTION
|
||||
WRITE(out_aa, RK3(out_aa, aa, induction(uu, aa), dt));
|
||||
#endif
|
||||
|
||||
|
||||
#if LENTROPY
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, ss, aa, vertexIdx), dt));
|
||||
WRITE(out_ss, RK3(out_ss, ss, entropy(ss, uu, lnrho, aa), dt));
|
||||
#else
|
||||
WRITE(out_uu, RK3(out_uu, uu, momentum(uu, lnrho, vertexIdx), dt));
|
||||
#endif
|
||||
}
|
Reference in New Issue
Block a user