initial commit
This commit is contained in:
98
CMakeLists.txt
Normal file
98
CMakeLists.txt
Normal file
@@ -0,0 +1,98 @@
|
||||
# 3.17+ for CMAKE_CUDA_KNOWN_FEATURES/cuda_std_11
|
||||
# 3.18+ for CUDA_ARCHITECTURES
|
||||
cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
|
||||
project(spmv LANGUAGES CXX CUDA VERSION 0.1.0.0)
|
||||
|
||||
include(CheckLanguage)
|
||||
|
||||
if(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
message(STATUS "CMAKE_CUDA_ARCHITECTURES not defined, setting to OFF")
|
||||
set(CMAKE_CUDA_ARCHITECTURES OFF CACHE STRING "")
|
||||
endif()
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
find_package(MPI REQUIRED)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
|
||||
if (MPI_FOUND)
|
||||
message(STATUS "MPI_CXX_COMPILER: ${MPI_CXX_COMPILER}")
|
||||
message(STATUS "MPI_CXX_INCLUDE_DIRS: ${MPI_CXX_INCLUDE_DIRS}")
|
||||
message(STATUS "MPI_CXX_LIBRARIES: ${MPI_CXX_LIBRARIES}")
|
||||
message(STATUS "MPI_CUDA_INCLUDE_DIRS: ${MPI_CUDA_INCLUDE_DIRS}")
|
||||
message(STATUS "MPI_CUDA_LIBRARIES: ${MPI_CUDA_LIBRARIES}")
|
||||
message(STATUS "MPIEXEC_EXECUTABLE: ${MPIEXEC_EXECUTABLE}")
|
||||
message(STATUS "MPIEXEC_NUMPROC_FLAG: ${MPIEXEC_NUMPROC_FLAG}")
|
||||
message(STATUS "MPIEXEC_MAX_NUMPROCS: ${MPIEXEC_MAX_NUMPROCS}")
|
||||
message(STATUS "MPIEXEC_PREFLAGS: ${MPIEXEC_PREFLAGS}")
|
||||
message(STATUS "MPIEXEC_POSTFLAGS: ${MPIEXEC_POSTFLAGS}")
|
||||
|
||||
endif()
|
||||
|
||||
function(set_cxx_options target)
|
||||
target_compile_options(${target} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CXX>:
|
||||
-Wall
|
||||
-Wextra
|
||||
-Wcast-align;
|
||||
-Wdisabled-optimization;
|
||||
-Wformat=2;
|
||||
-Winit-self;
|
||||
-Wlogical-op;
|
||||
-Wmissing-include-dirs;
|
||||
-Woverloaded-virtual;
|
||||
-Wpointer-arith;
|
||||
-Wshadow;
|
||||
-Wstrict-aliasing;
|
||||
-Wswitch-enum;
|
||||
-Wvla;
|
||||
>
|
||||
)
|
||||
endfunction()
|
||||
|
||||
function(set_cuda_options target)
|
||||
target_compile_options(${target} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:CUDA>:
|
||||
--Wno-deprecated-gpu-targets;
|
||||
--expt-extended-lambda;
|
||||
-Xcompiler=-Wall;
|
||||
-Xcompiler=-Wextra;
|
||||
-Xcompiler=-Wcast-align;
|
||||
-Xcompiler=-Wdisabled-optimization;
|
||||
-Xcompiler=-Wformat=2;
|
||||
-Xcompiler=-Winit-self;
|
||||
-Xcompiler=-Wlogical-op;
|
||||
-Xcompiler=-Wmissing-include-dirs;
|
||||
-Xcompiler=-Woverloaded-virtual;
|
||||
-Xcompiler=-Wpointer-arith;
|
||||
-Xcompiler=-Wshadow;
|
||||
-Xcompiler=-Wstrict-aliasing;
|
||||
-Xcompiler=-Wswitch-enum;
|
||||
-Xcompiler=-Wvla;
|
||||
-Xptxas=-v;
|
||||
>
|
||||
)
|
||||
endfunction()
|
||||
|
||||
function(set_cxx_standard target)
|
||||
set_property(TARGET ${target} PROPERTY CXX_STANDARD 11)
|
||||
set_property(TARGET ${target} PROPERTY CXX_EXTENSIONS OFF)
|
||||
set_property(TARGET ${target} PROPERTY CXX_STANDARD_REQUIRED ON)
|
||||
set_property(TARGET ${target} PROPERTY CUDA_STANDARD 11)
|
||||
set_property(TARGET ${target} PROPERTY CUDA_STANDARD_REQUIRED ON)
|
||||
endfunction()
|
||||
|
||||
# copy run-all.sh to build directory
|
||||
#configure_file(${CMAKE_CURRENT_LIST_DIR}/run-all.sh ${CMAKE_CURRENT_BINARY_DIR}/run-all.sh COPYONLY)
|
||||
|
||||
if (MPI_FOUND)
|
||||
add_executable(main main.cu)
|
||||
target_include_directories(main PRIVATE SYSTEM ${MPI_CXX_INCLUDE_DIRS})
|
||||
target_link_libraries(main ${MPI_CXX_LIBRARIES})
|
||||
# target_include_directories(main PRIVATE ${MPI_CXX_INCLUDE_PATH})
|
||||
# target_compile_options(main PRIVATE ${MPI_CXX_COMPILE_FLAGS})
|
||||
# target_link_libraries(main ${MPI_CXX_LIBRARIES} ${MPI_CXX_LINK_FLAGS})
|
||||
set_cxx_options(main)
|
||||
set_cxx_standard(main)
|
||||
endif()
|
||||
|
11
README.md
Normal file
11
README.md
Normal file
@@ -0,0 +1,11 @@
|
||||
# dist-spmv
|
||||
|
||||
**vortex**
|
||||
```
|
||||
module --force purge
|
||||
module load StdEnv
|
||||
module load xl/2021.03.11
|
||||
module load cuda/10.1.243
|
||||
module load spectrum-mpi/rolling-release
|
||||
module load cmake/3.18.0
|
||||
```
|
15
cuda_runtime.hpp
Normal file
15
cuda_runtime.hpp
Normal file
@@ -0,0 +1,15 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdio>
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
inline void checkCuda(cudaError_t result, const char *file, const int line)
|
||||
{
|
||||
if (result != cudaSuccess)
|
||||
{
|
||||
fprintf(stderr, "%s:%d: CUDA Runtime Error %d: %s\n", file, line, int(result), cudaGetErrorString(result));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
#define CUDA_RUNTIME(stmt) checkCuda(stmt, __FILE__, __LINE__);
|
476
main.cu
Normal file
476
main.cu
Normal file
@@ -0,0 +1,476 @@
|
||||
#include <mpi.h>
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
|
||||
#include "cuda_runtime.hpp"
|
||||
|
||||
template<typename ForwardIt>
|
||||
void shift_left(ForwardIt first, ForwardIt last, size_t n) {
|
||||
for (size_t i = 0; i < last-first; ++i) {
|
||||
*(first-n+i) = *(first+i);
|
||||
}
|
||||
}
|
||||
|
||||
enum Tag : int {
|
||||
row_ptr,
|
||||
col_ind,
|
||||
val,
|
||||
x,
|
||||
num_cols
|
||||
};
|
||||
|
||||
enum class Where {
|
||||
host,
|
||||
device
|
||||
};
|
||||
|
||||
template <Where where, typename T>
|
||||
class Array {
|
||||
public:
|
||||
Array();
|
||||
int64_t size() const;
|
||||
};
|
||||
|
||||
|
||||
/* device array
|
||||
*/
|
||||
template<typename T> class Array<Where::device, T>
|
||||
{
|
||||
public:
|
||||
|
||||
// A non-owning view of data
|
||||
struct View
|
||||
{
|
||||
T *data_;
|
||||
int64_t size_;
|
||||
public:
|
||||
View() : data_(nullptr), size_(0){}
|
||||
View(const View &other) = default;
|
||||
|
||||
// create view from array
|
||||
View(const Array &a) {
|
||||
size_ = a.size();
|
||||
data_ = a.data_;
|
||||
}
|
||||
__device__ int64_t size() const { return size_; }
|
||||
};
|
||||
|
||||
// array owns the data in this view
|
||||
View view_;
|
||||
public:
|
||||
Array() = default;
|
||||
Array(const Array &other) = delete;
|
||||
|
||||
Array(const std::vector<T> &v) {
|
||||
view_.size_ = v.size();
|
||||
CUDA_RUNTIME(cudaMalloc(&view_.data_, view_.size_ * sizeof(T)));
|
||||
CUDA_RUNTIME(cudaMemcpy(view_.data_, v.data(), view_.size_ * sizeof(T), cudaMemcpyHostToDevice));
|
||||
}
|
||||
~Array() {
|
||||
CUDA_RUNTIME(cudaFree(view_.data_));
|
||||
view_.data_ = nullptr;
|
||||
view_.size_ = 0;
|
||||
}
|
||||
int64_t size() const { return view_.size(); }
|
||||
|
||||
View view() const {
|
||||
return view_; // copy of internal view
|
||||
}
|
||||
};
|
||||
|
||||
class CooMat {
|
||||
public:
|
||||
|
||||
|
||||
struct Entry {
|
||||
int i;
|
||||
int j;
|
||||
float e;
|
||||
|
||||
Entry(int _i, int _j, int _e) : i(_i), j(_j), e(_e) {}
|
||||
|
||||
static bool by_ij(const Entry &a, const Entry &b) {
|
||||
if (a.i < b.i) {
|
||||
return true;
|
||||
} else if (a.i > b.i) {
|
||||
return false;
|
||||
} else {
|
||||
return a.j < b.j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
std::vector<Entry> data_;
|
||||
int64_t numRows_;
|
||||
int64_t numCols_;
|
||||
|
||||
public:
|
||||
CooMat(int m, int n) : numRows_(m), numCols_(n) {}
|
||||
const std::vector<Entry> &entries() const {return data_;}
|
||||
void push_back(int i, int j, int e) {
|
||||
data_.push_back(Entry(i, j, e));
|
||||
}
|
||||
|
||||
void sort() {
|
||||
std::sort(data_.begin(), data_.end(), Entry::by_ij);
|
||||
}
|
||||
|
||||
int64_t num_rows() const {return numRows_;}
|
||||
int64_t num_cols() const {return numRows_;}
|
||||
int64_t nnz() const {return data_.size();}
|
||||
};
|
||||
|
||||
template <Where where>
|
||||
class CsrMat {
|
||||
public:
|
||||
CsrMat();
|
||||
int64_t nnz() const;
|
||||
int64_t num_rows() const;
|
||||
};
|
||||
template<> class CsrMat<Where::host>;
|
||||
template<> class CsrMat<Where::device>;
|
||||
|
||||
/* host sparse matrix */
|
||||
template<> class CsrMat<Where::host>
|
||||
{
|
||||
friend class CsrMat<Where::device>; // device can see inside
|
||||
std::vector<int> rowPtr_;
|
||||
std::vector<int> colInd_;
|
||||
std::vector<float> val_;
|
||||
int64_t numCols_;
|
||||
|
||||
public:
|
||||
CsrMat() = default;
|
||||
CsrMat(int numRows, int numCols, int nnz) : rowPtr_(numRows+1), colInd_(nnz), val_(nnz) {}
|
||||
|
||||
CsrMat(const CooMat &coo) : numCols_(coo.num_cols()) {
|
||||
for (auto &e : coo.entries()) {
|
||||
while (rowPtr_.size() <= e.i) {
|
||||
rowPtr_.push_back(colInd_.size());
|
||||
}
|
||||
colInd_.push_back(e.j);
|
||||
val_.push_back(e.e);
|
||||
}
|
||||
while (rowPtr_.size() < coo.num_rows()+1){
|
||||
rowPtr_.push_back(colInd_.size());
|
||||
}
|
||||
}
|
||||
|
||||
int64_t num_rows() const {
|
||||
if (rowPtr_.size() <= 1) {
|
||||
return 0;
|
||||
} else {
|
||||
return rowPtr_.size() - 1;
|
||||
}
|
||||
}
|
||||
|
||||
int64_t num_cols() const {
|
||||
return numCols_;
|
||||
}
|
||||
|
||||
int64_t nnz() const {
|
||||
if (colInd_.size() != val_.size()) {
|
||||
throw std::logic_error("bad invariant");
|
||||
}
|
||||
return colInd_.size();
|
||||
}
|
||||
|
||||
const int *row_ptr() const {return rowPtr_.data(); }
|
||||
int *row_ptr() {return rowPtr_.data(); }
|
||||
const int *col_ind() const {return colInd_.data(); }
|
||||
int *col_ind() {return colInd_.data(); }
|
||||
const float *val() const {return val_.data(); }
|
||||
float *val() {return val_.data(); }
|
||||
|
||||
/* keep rows [rowStart, rowEnd)
|
||||
*/
|
||||
void retain_rows(int rowStart, int rowEnd) {
|
||||
|
||||
if (0 == rowEnd) {
|
||||
throw std::logic_error("unimplemented");
|
||||
}
|
||||
// erase rows after
|
||||
// dont want to keep rowEnd, so rowEnd points to end of rowEnd-1
|
||||
std::cerr << "resize rowPtr_ to " << rowEnd+1 << "\n";
|
||||
rowPtr_.resize(rowEnd+1);
|
||||
std::cerr << "resize entries to " << rowPtr_.back() << "\n";
|
||||
colInd_.resize(rowPtr_.back());
|
||||
val_.resize(rowPtr_.back());
|
||||
|
||||
// erase early row pointers
|
||||
std::cerr << "shl rowPtr by " << rowStart << "\n";
|
||||
shift_left(rowPtr_.begin()+rowStart, rowPtr_.end(), rowStart);
|
||||
std::cerr << "resize rowPtr to " << rowEnd - rowStart+1 << "\n";
|
||||
rowPtr_.resize(rowEnd-rowStart+1);
|
||||
|
||||
const int off = rowPtr_[0];
|
||||
// erase entries for first rows
|
||||
std::cerr << "shl entries by " << off << "\n";
|
||||
shift_left(colInd_.begin()+off, colInd_.end(), off);
|
||||
shift_left(val_.begin()+off, val_.end(), off);
|
||||
|
||||
// adjust row pointer offset
|
||||
std::cerr << "subtract rowPtrs by " << off << "\n";
|
||||
for (auto &e : rowPtr_) {
|
||||
e -= off;
|
||||
}
|
||||
|
||||
// resize entries
|
||||
std::cerr << "resize entries to " << rowPtr_.back() << "\n";
|
||||
colInd_.resize(rowPtr_.back());
|
||||
val_.resize(rowPtr_.back());
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/* device sparse matrix
|
||||
*/
|
||||
template<> class CsrMat<Where::device>
|
||||
{
|
||||
Array<Where::device, int> rowPtr_;
|
||||
Array<Where::device, int> colInd_;
|
||||
Array<Where::device, float> val_;
|
||||
|
||||
public:
|
||||
|
||||
struct View {
|
||||
Array<Where::device, int>::View rowPtr_;
|
||||
Array<Where::device, int>::View colInd_;
|
||||
Array<Where::device, float>::View val_;
|
||||
|
||||
__device__ int num_rows() const {
|
||||
if (rowPtr_.size() > 0) {
|
||||
return rowPtr_.size() - 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// create device matrix from host
|
||||
CsrMat(const CsrMat<Where::host> &m) :
|
||||
rowPtr_(m.rowPtr_), colInd_(m.colInd_), val_(m.val_) {
|
||||
if (colInd_.size() != val_.size()) {
|
||||
throw std::logic_error("bad invariant");
|
||||
}
|
||||
}
|
||||
~CsrMat() {
|
||||
}
|
||||
int64_t num_rows() const {
|
||||
if (rowPtr_.size() <= 1) {
|
||||
return 0;
|
||||
} else {
|
||||
return rowPtr_.size() - 1;
|
||||
}
|
||||
}
|
||||
|
||||
int64_t nnz() const {
|
||||
return colInd_.size();
|
||||
}
|
||||
|
||||
View view() const {
|
||||
View v;
|
||||
v.rowPtr_ = rowPtr_.view();
|
||||
v.colInd_ = colInd_.view();
|
||||
v.val_ = val_.view();
|
||||
return v;
|
||||
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
// mxn random matrix with nnz
|
||||
CsrMat<Where::host> random_matrix(const int64_t m, const int64_t n, const int64_t nnz) {
|
||||
CooMat coo(m,n);
|
||||
for (int i = 0; i < nnz; ++i) {
|
||||
int r = rand() % m;
|
||||
int c = rand() % n;
|
||||
float e = 1.0;
|
||||
coo.push_back(r, c, e);
|
||||
}
|
||||
coo.sort();
|
||||
std::cerr << "coo: " << coo.num_rows() << "x" << coo.num_cols() << "\n";
|
||||
CsrMat<Where::host> csr(coo);
|
||||
std::cerr << "csr: " << csr.num_rows() << "x" << csr.num_cols() << " w/ " << csr.nnz() << "\n";
|
||||
return csr;
|
||||
};
|
||||
|
||||
std::vector<float> random_vector(const int64_t n) {
|
||||
return std::vector<float>(n, 1.0);
|
||||
}
|
||||
|
||||
std::vector<CsrMat<Where::host>> part_by_rows(const CsrMat<Where::host> &m, const int parts) {
|
||||
|
||||
std::vector<CsrMat<Where::host>> mats;
|
||||
|
||||
int rowStart = 0;
|
||||
for (int p = 0; p < parts; ++p) {
|
||||
int partSize = m.num_rows() / parts;
|
||||
if (p < m.num_rows() % parts) {
|
||||
++partSize;
|
||||
}
|
||||
std::cerr << "matrix part " << p << " has " << partSize << " rows\n";
|
||||
const int rowEnd = rowStart + partSize;
|
||||
CsrMat<Where::host> part(m);
|
||||
part.retain_rows(rowStart, rowEnd);
|
||||
rowStart = rowEnd;
|
||||
mats.push_back(part);
|
||||
}
|
||||
|
||||
return mats;
|
||||
}
|
||||
|
||||
std::vector<std::vector<float>> part_by_rows(const std::vector<float> &x, const int parts) {
|
||||
std::vector<std::vector<float>> xs;
|
||||
|
||||
int rowStart = 0;
|
||||
for (int p = 0; p < parts; ++p) {
|
||||
int partSize = x.size() / parts;
|
||||
if (p < x.size() % parts) {
|
||||
++partSize;
|
||||
}
|
||||
std::cerr << "vector part " << p << " has " << partSize << " rows\n";
|
||||
const int rowEnd = rowStart + partSize;
|
||||
std::vector<float> part(x.begin()+rowStart, x.begin()+rowEnd);
|
||||
xs.push_back(part);
|
||||
}
|
||||
|
||||
return xs;
|
||||
}
|
||||
|
||||
int send_matrix(int dst, int src, CsrMat<Where::host> &&m, MPI_Comm comm) {
|
||||
|
||||
int numCols = m.num_cols();
|
||||
MPI_Send(&numCols, 1, MPI_INT, dst, Tag::num_cols, comm);
|
||||
MPI_Send(m.row_ptr(), m.num_rows()+1, MPI_INT, dst, Tag::row_ptr, comm);
|
||||
MPI_Send(m.col_ind(), m.nnz(), MPI_INT, dst, Tag::col_ind, comm);
|
||||
MPI_Send(m.val(), m.nnz(), MPI_FLOAT, dst, Tag::val, comm);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
CsrMat<Where::host> receive_matrix(int dst, int src, MPI_Comm comm) {
|
||||
|
||||
int numCols;
|
||||
MPI_Recv(&numCols, 1, MPI_INT, 0, Tag::num_cols, comm, MPI_STATUS_IGNORE);
|
||||
|
||||
// probe for number of rows
|
||||
MPI_Status stat;
|
||||
MPI_Probe(0, Tag::row_ptr, comm, &stat);
|
||||
int numRows;
|
||||
MPI_Get_count(&stat, MPI_INT, &numRows);
|
||||
if (numRows > 0) {
|
||||
--numRows;
|
||||
}
|
||||
|
||||
// probe for nnz
|
||||
MPI_Probe(0, Tag::col_ind, comm, &stat);
|
||||
int nnz;
|
||||
MPI_Get_count(&stat, MPI_INT, &nnz);
|
||||
|
||||
std::cerr << "recv " << numRows << "x" << numCols << " w/ " << nnz << "\n";
|
||||
CsrMat<Where::host> csr(numRows, numCols, nnz);
|
||||
|
||||
// receive actual data into matrix
|
||||
MPI_Recv(csr.row_ptr(), numRows+1, MPI_INT, 0, Tag::row_ptr, comm, MPI_STATUS_IGNORE);
|
||||
// receive actual data into matrix
|
||||
MPI_Recv(csr.col_ind(), nnz, MPI_INT, 0, Tag::col_ind, comm, MPI_STATUS_IGNORE);
|
||||
// receive actual data into matrix
|
||||
MPI_Recv(csr.val(), nnz, MPI_FLOAT, 0, Tag::val, comm, MPI_STATUS_IGNORE);
|
||||
|
||||
return csr;
|
||||
}
|
||||
|
||||
int send_vector(int dst, int src, std::vector<float> &&v, MPI_Comm comm) {
|
||||
MPI_Send(v.data(), v.size(), MPI_FLOAT, dst, Tag::x, comm);
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::vector<float> receive_vector(int dst, int src, MPI_Comm comm) {
|
||||
|
||||
// probe for size
|
||||
MPI_Status stat;
|
||||
MPI_Probe(0, Tag::x, comm, &stat);
|
||||
int sz;
|
||||
MPI_Get_count(&stat, MPI_INT, &sz);
|
||||
std::vector<float> x(sz);
|
||||
|
||||
std::cerr << "recv " << sz << " x entries\n";
|
||||
|
||||
// receive actual data into matrix
|
||||
MPI_Recv(x.data(), x.size(), MPI_FLOAT, 0, Tag::x, comm, MPI_STATUS_IGNORE);
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
__global__ void spmv(Array<Where::device, float>::View b, const CsrMat<Where::device>::View A, const Array<Where::device, float>::View x) {
|
||||
|
||||
// one block per row
|
||||
for (int r = blockIdx.x; r < A.num_rows(); r += gridDim.x) {
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
int main (int argc, char **argv) {
|
||||
|
||||
MPI_Init(&argc, &argv);
|
||||
|
||||
int rank, size;
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size);
|
||||
|
||||
int64_t m = 100;
|
||||
int64_t n = 50;
|
||||
int64_t nnz = 5000;
|
||||
|
||||
CsrMat<Where::host> A;
|
||||
std::vector<float> x;
|
||||
|
||||
// generate and send or recv A
|
||||
if (0 == rank) {
|
||||
A = random_matrix(m, n, nnz);
|
||||
std::vector<float> x = random_vector(n);
|
||||
std::vector<CsrMat<Where::host>> As = part_by_rows(A, size);
|
||||
std::vector<std::vector<float>> xs = part_by_rows(x, size);
|
||||
for (size_t dst = 1; dst < size; ++dst) {
|
||||
std::cerr << "send A to " << dst << "\n";
|
||||
send_matrix(dst, 0, std::move(As[dst]), MPI_COMM_WORLD);
|
||||
std::cerr << "send x to " << dst << "\n";
|
||||
send_vector(dst, 0, std::move(xs[dst]), MPI_COMM_WORLD);
|
||||
}
|
||||
A = As[rank];
|
||||
x = xs[rank];
|
||||
} else {
|
||||
std::cerr << "recv A at " << rank << "\n";
|
||||
A = receive_matrix(rank, 0, MPI_COMM_WORLD);
|
||||
std::cerr << "recv x at " << rank << "\n";
|
||||
x = receive_vector(rank, 0, MPI_COMM_WORLD);
|
||||
}
|
||||
|
||||
// Product vector size is same as local rows of A
|
||||
std::vector<float> b(A.num_rows());
|
||||
|
||||
// get GPU versions
|
||||
CsrMat<Where::device> Ad(A);
|
||||
Array<Where::device, float> xd(x);
|
||||
Array<Where::device, float> bd(b);
|
||||
|
||||
// do spmv
|
||||
dim3 dimBlock(32,8,1);
|
||||
dim3 dimGrid(100);
|
||||
spmv<<<dimGrid, dimBlock>>>(bd.view(), Ad.view(), xd.view());
|
||||
CUDA_RUNTIME(cudaDeviceSynchronize());
|
||||
|
||||
MPI_Finalize();
|
||||
|
||||
}
|
Reference in New Issue
Block a user