initial commit

This commit is contained in:
Carl Pearson
2021-05-14 17:18:25 -06:00
commit a4b08da21d
4 changed files with 600 additions and 0 deletions

98
CMakeLists.txt Normal file
View File

@@ -0,0 +1,98 @@
# 3.17+ for CMAKE_CUDA_KNOWN_FEATURES/cuda_std_11
# 3.18+ for CUDA_ARCHITECTURES
cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
project(spmv LANGUAGES CXX CUDA VERSION 0.1.0.0)
include(CheckLanguage)
if(NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
message(STATUS "CMAKE_CUDA_ARCHITECTURES not defined, setting to OFF")
set(CMAKE_CUDA_ARCHITECTURES OFF CACHE STRING "")
endif()
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
find_package(MPI REQUIRED)
find_package(CUDAToolkit REQUIRED)
if (MPI_FOUND)
message(STATUS "MPI_CXX_COMPILER: ${MPI_CXX_COMPILER}")
message(STATUS "MPI_CXX_INCLUDE_DIRS: ${MPI_CXX_INCLUDE_DIRS}")
message(STATUS "MPI_CXX_LIBRARIES: ${MPI_CXX_LIBRARIES}")
message(STATUS "MPI_CUDA_INCLUDE_DIRS: ${MPI_CUDA_INCLUDE_DIRS}")
message(STATUS "MPI_CUDA_LIBRARIES: ${MPI_CUDA_LIBRARIES}")
message(STATUS "MPIEXEC_EXECUTABLE: ${MPIEXEC_EXECUTABLE}")
message(STATUS "MPIEXEC_NUMPROC_FLAG: ${MPIEXEC_NUMPROC_FLAG}")
message(STATUS "MPIEXEC_MAX_NUMPROCS: ${MPIEXEC_MAX_NUMPROCS}")
message(STATUS "MPIEXEC_PREFLAGS: ${MPIEXEC_PREFLAGS}")
message(STATUS "MPIEXEC_POSTFLAGS: ${MPIEXEC_POSTFLAGS}")
endif()
function(set_cxx_options target)
target_compile_options(${target} PRIVATE
$<$<COMPILE_LANGUAGE:CXX>:
-Wall
-Wextra
-Wcast-align;
-Wdisabled-optimization;
-Wformat=2;
-Winit-self;
-Wlogical-op;
-Wmissing-include-dirs;
-Woverloaded-virtual;
-Wpointer-arith;
-Wshadow;
-Wstrict-aliasing;
-Wswitch-enum;
-Wvla;
>
)
endfunction()
function(set_cuda_options target)
target_compile_options(${target} PRIVATE
$<$<COMPILE_LANGUAGE:CUDA>:
--Wno-deprecated-gpu-targets;
--expt-extended-lambda;
-Xcompiler=-Wall;
-Xcompiler=-Wextra;
-Xcompiler=-Wcast-align;
-Xcompiler=-Wdisabled-optimization;
-Xcompiler=-Wformat=2;
-Xcompiler=-Winit-self;
-Xcompiler=-Wlogical-op;
-Xcompiler=-Wmissing-include-dirs;
-Xcompiler=-Woverloaded-virtual;
-Xcompiler=-Wpointer-arith;
-Xcompiler=-Wshadow;
-Xcompiler=-Wstrict-aliasing;
-Xcompiler=-Wswitch-enum;
-Xcompiler=-Wvla;
-Xptxas=-v;
>
)
endfunction()
function(set_cxx_standard target)
set_property(TARGET ${target} PROPERTY CXX_STANDARD 11)
set_property(TARGET ${target} PROPERTY CXX_EXTENSIONS OFF)
set_property(TARGET ${target} PROPERTY CXX_STANDARD_REQUIRED ON)
set_property(TARGET ${target} PROPERTY CUDA_STANDARD 11)
set_property(TARGET ${target} PROPERTY CUDA_STANDARD_REQUIRED ON)
endfunction()
# copy run-all.sh to build directory
#configure_file(${CMAKE_CURRENT_LIST_DIR}/run-all.sh ${CMAKE_CURRENT_BINARY_DIR}/run-all.sh COPYONLY)
if (MPI_FOUND)
add_executable(main main.cu)
target_include_directories(main PRIVATE SYSTEM ${MPI_CXX_INCLUDE_DIRS})
target_link_libraries(main ${MPI_CXX_LIBRARIES})
# target_include_directories(main PRIVATE ${MPI_CXX_INCLUDE_PATH})
# target_compile_options(main PRIVATE ${MPI_CXX_COMPILE_FLAGS})
# target_link_libraries(main ${MPI_CXX_LIBRARIES} ${MPI_CXX_LINK_FLAGS})
set_cxx_options(main)
set_cxx_standard(main)
endif()

11
README.md Normal file
View File

@@ -0,0 +1,11 @@
# dist-spmv
**vortex**
```
module --force purge
module load StdEnv
module load xl/2021.03.11
module load cuda/10.1.243
module load spectrum-mpi/rolling-release
module load cmake/3.18.0
```

15
cuda_runtime.hpp Normal file
View File

@@ -0,0 +1,15 @@
#pragma once
#include <cstdio>
#include <cuda_runtime.h>
inline void checkCuda(cudaError_t result, const char *file, const int line)
{
if (result != cudaSuccess)
{
fprintf(stderr, "%s:%d: CUDA Runtime Error %d: %s\n", file, line, int(result), cudaGetErrorString(result));
exit(-1);
}
}
#define CUDA_RUNTIME(stmt) checkCuda(stmt, __FILE__, __LINE__);

476
main.cu Normal file
View File

@@ -0,0 +1,476 @@
#include <mpi.h>
#include <vector>
#include <string>
#include <stdexcept>
#include <algorithm>
#include <iostream>
#include "cuda_runtime.hpp"
template<typename ForwardIt>
void shift_left(ForwardIt first, ForwardIt last, size_t n) {
for (size_t i = 0; i < last-first; ++i) {
*(first-n+i) = *(first+i);
}
}
enum Tag : int {
row_ptr,
col_ind,
val,
x,
num_cols
};
enum class Where {
host,
device
};
template <Where where, typename T>
class Array {
public:
Array();
int64_t size() const;
};
/* device array
*/
template<typename T> class Array<Where::device, T>
{
public:
// A non-owning view of data
struct View
{
T *data_;
int64_t size_;
public:
View() : data_(nullptr), size_(0){}
View(const View &other) = default;
// create view from array
View(const Array &a) {
size_ = a.size();
data_ = a.data_;
}
__device__ int64_t size() const { return size_; }
};
// array owns the data in this view
View view_;
public:
Array() = default;
Array(const Array &other) = delete;
Array(const std::vector<T> &v) {
view_.size_ = v.size();
CUDA_RUNTIME(cudaMalloc(&view_.data_, view_.size_ * sizeof(T)));
CUDA_RUNTIME(cudaMemcpy(view_.data_, v.data(), view_.size_ * sizeof(T), cudaMemcpyHostToDevice));
}
~Array() {
CUDA_RUNTIME(cudaFree(view_.data_));
view_.data_ = nullptr;
view_.size_ = 0;
}
int64_t size() const { return view_.size(); }
View view() const {
return view_; // copy of internal view
}
};
class CooMat {
public:
struct Entry {
int i;
int j;
float e;
Entry(int _i, int _j, int _e) : i(_i), j(_j), e(_e) {}
static bool by_ij(const Entry &a, const Entry &b) {
if (a.i < b.i) {
return true;
} else if (a.i > b.i) {
return false;
} else {
return a.j < b.j;
}
}
};
private:
std::vector<Entry> data_;
int64_t numRows_;
int64_t numCols_;
public:
CooMat(int m, int n) : numRows_(m), numCols_(n) {}
const std::vector<Entry> &entries() const {return data_;}
void push_back(int i, int j, int e) {
data_.push_back(Entry(i, j, e));
}
void sort() {
std::sort(data_.begin(), data_.end(), Entry::by_ij);
}
int64_t num_rows() const {return numRows_;}
int64_t num_cols() const {return numRows_;}
int64_t nnz() const {return data_.size();}
};
template <Where where>
class CsrMat {
public:
CsrMat();
int64_t nnz() const;
int64_t num_rows() const;
};
template<> class CsrMat<Where::host>;
template<> class CsrMat<Where::device>;
/* host sparse matrix */
template<> class CsrMat<Where::host>
{
friend class CsrMat<Where::device>; // device can see inside
std::vector<int> rowPtr_;
std::vector<int> colInd_;
std::vector<float> val_;
int64_t numCols_;
public:
CsrMat() = default;
CsrMat(int numRows, int numCols, int nnz) : rowPtr_(numRows+1), colInd_(nnz), val_(nnz) {}
CsrMat(const CooMat &coo) : numCols_(coo.num_cols()) {
for (auto &e : coo.entries()) {
while (rowPtr_.size() <= e.i) {
rowPtr_.push_back(colInd_.size());
}
colInd_.push_back(e.j);
val_.push_back(e.e);
}
while (rowPtr_.size() < coo.num_rows()+1){
rowPtr_.push_back(colInd_.size());
}
}
int64_t num_rows() const {
if (rowPtr_.size() <= 1) {
return 0;
} else {
return rowPtr_.size() - 1;
}
}
int64_t num_cols() const {
return numCols_;
}
int64_t nnz() const {
if (colInd_.size() != val_.size()) {
throw std::logic_error("bad invariant");
}
return colInd_.size();
}
const int *row_ptr() const {return rowPtr_.data(); }
int *row_ptr() {return rowPtr_.data(); }
const int *col_ind() const {return colInd_.data(); }
int *col_ind() {return colInd_.data(); }
const float *val() const {return val_.data(); }
float *val() {return val_.data(); }
/* keep rows [rowStart, rowEnd)
*/
void retain_rows(int rowStart, int rowEnd) {
if (0 == rowEnd) {
throw std::logic_error("unimplemented");
}
// erase rows after
// dont want to keep rowEnd, so rowEnd points to end of rowEnd-1
std::cerr << "resize rowPtr_ to " << rowEnd+1 << "\n";
rowPtr_.resize(rowEnd+1);
std::cerr << "resize entries to " << rowPtr_.back() << "\n";
colInd_.resize(rowPtr_.back());
val_.resize(rowPtr_.back());
// erase early row pointers
std::cerr << "shl rowPtr by " << rowStart << "\n";
shift_left(rowPtr_.begin()+rowStart, rowPtr_.end(), rowStart);
std::cerr << "resize rowPtr to " << rowEnd - rowStart+1 << "\n";
rowPtr_.resize(rowEnd-rowStart+1);
const int off = rowPtr_[0];
// erase entries for first rows
std::cerr << "shl entries by " << off << "\n";
shift_left(colInd_.begin()+off, colInd_.end(), off);
shift_left(val_.begin()+off, val_.end(), off);
// adjust row pointer offset
std::cerr << "subtract rowPtrs by " << off << "\n";
for (auto &e : rowPtr_) {
e -= off;
}
// resize entries
std::cerr << "resize entries to " << rowPtr_.back() << "\n";
colInd_.resize(rowPtr_.back());
val_.resize(rowPtr_.back());
}
};
/* device sparse matrix
*/
template<> class CsrMat<Where::device>
{
Array<Where::device, int> rowPtr_;
Array<Where::device, int> colInd_;
Array<Where::device, float> val_;
public:
struct View {
Array<Where::device, int>::View rowPtr_;
Array<Where::device, int>::View colInd_;
Array<Where::device, float>::View val_;
__device__ int num_rows() const {
if (rowPtr_.size() > 0) {
return rowPtr_.size() - 1;
} else {
return 0;
}
}
};
// create device matrix from host
CsrMat(const CsrMat<Where::host> &m) :
rowPtr_(m.rowPtr_), colInd_(m.colInd_), val_(m.val_) {
if (colInd_.size() != val_.size()) {
throw std::logic_error("bad invariant");
}
}
~CsrMat() {
}
int64_t num_rows() const {
if (rowPtr_.size() <= 1) {
return 0;
} else {
return rowPtr_.size() - 1;
}
}
int64_t nnz() const {
return colInd_.size();
}
View view() const {
View v;
v.rowPtr_ = rowPtr_.view();
v.colInd_ = colInd_.view();
v.val_ = val_.view();
return v;
}
};
// mxn random matrix with nnz
CsrMat<Where::host> random_matrix(const int64_t m, const int64_t n, const int64_t nnz) {
CooMat coo(m,n);
for (int i = 0; i < nnz; ++i) {
int r = rand() % m;
int c = rand() % n;
float e = 1.0;
coo.push_back(r, c, e);
}
coo.sort();
std::cerr << "coo: " << coo.num_rows() << "x" << coo.num_cols() << "\n";
CsrMat<Where::host> csr(coo);
std::cerr << "csr: " << csr.num_rows() << "x" << csr.num_cols() << " w/ " << csr.nnz() << "\n";
return csr;
};
std::vector<float> random_vector(const int64_t n) {
return std::vector<float>(n, 1.0);
}
std::vector<CsrMat<Where::host>> part_by_rows(const CsrMat<Where::host> &m, const int parts) {
std::vector<CsrMat<Where::host>> mats;
int rowStart = 0;
for (int p = 0; p < parts; ++p) {
int partSize = m.num_rows() / parts;
if (p < m.num_rows() % parts) {
++partSize;
}
std::cerr << "matrix part " << p << " has " << partSize << " rows\n";
const int rowEnd = rowStart + partSize;
CsrMat<Where::host> part(m);
part.retain_rows(rowStart, rowEnd);
rowStart = rowEnd;
mats.push_back(part);
}
return mats;
}
std::vector<std::vector<float>> part_by_rows(const std::vector<float> &x, const int parts) {
std::vector<std::vector<float>> xs;
int rowStart = 0;
for (int p = 0; p < parts; ++p) {
int partSize = x.size() / parts;
if (p < x.size() % parts) {
++partSize;
}
std::cerr << "vector part " << p << " has " << partSize << " rows\n";
const int rowEnd = rowStart + partSize;
std::vector<float> part(x.begin()+rowStart, x.begin()+rowEnd);
xs.push_back(part);
}
return xs;
}
int send_matrix(int dst, int src, CsrMat<Where::host> &&m, MPI_Comm comm) {
int numCols = m.num_cols();
MPI_Send(&numCols, 1, MPI_INT, dst, Tag::num_cols, comm);
MPI_Send(m.row_ptr(), m.num_rows()+1, MPI_INT, dst, Tag::row_ptr, comm);
MPI_Send(m.col_ind(), m.nnz(), MPI_INT, dst, Tag::col_ind, comm);
MPI_Send(m.val(), m.nnz(), MPI_FLOAT, dst, Tag::val, comm);
return 0;
}
CsrMat<Where::host> receive_matrix(int dst, int src, MPI_Comm comm) {
int numCols;
MPI_Recv(&numCols, 1, MPI_INT, 0, Tag::num_cols, comm, MPI_STATUS_IGNORE);
// probe for number of rows
MPI_Status stat;
MPI_Probe(0, Tag::row_ptr, comm, &stat);
int numRows;
MPI_Get_count(&stat, MPI_INT, &numRows);
if (numRows > 0) {
--numRows;
}
// probe for nnz
MPI_Probe(0, Tag::col_ind, comm, &stat);
int nnz;
MPI_Get_count(&stat, MPI_INT, &nnz);
std::cerr << "recv " << numRows << "x" << numCols << " w/ " << nnz << "\n";
CsrMat<Where::host> csr(numRows, numCols, nnz);
// receive actual data into matrix
MPI_Recv(csr.row_ptr(), numRows+1, MPI_INT, 0, Tag::row_ptr, comm, MPI_STATUS_IGNORE);
// receive actual data into matrix
MPI_Recv(csr.col_ind(), nnz, MPI_INT, 0, Tag::col_ind, comm, MPI_STATUS_IGNORE);
// receive actual data into matrix
MPI_Recv(csr.val(), nnz, MPI_FLOAT, 0, Tag::val, comm, MPI_STATUS_IGNORE);
return csr;
}
int send_vector(int dst, int src, std::vector<float> &&v, MPI_Comm comm) {
MPI_Send(v.data(), v.size(), MPI_FLOAT, dst, Tag::x, comm);
return 0;
}
std::vector<float> receive_vector(int dst, int src, MPI_Comm comm) {
// probe for size
MPI_Status stat;
MPI_Probe(0, Tag::x, comm, &stat);
int sz;
MPI_Get_count(&stat, MPI_INT, &sz);
std::vector<float> x(sz);
std::cerr << "recv " << sz << " x entries\n";
// receive actual data into matrix
MPI_Recv(x.data(), x.size(), MPI_FLOAT, 0, Tag::x, comm, MPI_STATUS_IGNORE);
return x;
}
__global__ void spmv(Array<Where::device, float>::View b, const CsrMat<Where::device>::View A, const Array<Where::device, float>::View x) {
// one block per row
for (int r = blockIdx.x; r < A.num_rows(); r += gridDim.x) {
}
}
int main (int argc, char **argv) {
MPI_Init(&argc, &argv);
int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
int64_t m = 100;
int64_t n = 50;
int64_t nnz = 5000;
CsrMat<Where::host> A;
std::vector<float> x;
// generate and send or recv A
if (0 == rank) {
A = random_matrix(m, n, nnz);
std::vector<float> x = random_vector(n);
std::vector<CsrMat<Where::host>> As = part_by_rows(A, size);
std::vector<std::vector<float>> xs = part_by_rows(x, size);
for (size_t dst = 1; dst < size; ++dst) {
std::cerr << "send A to " << dst << "\n";
send_matrix(dst, 0, std::move(As[dst]), MPI_COMM_WORLD);
std::cerr << "send x to " << dst << "\n";
send_vector(dst, 0, std::move(xs[dst]), MPI_COMM_WORLD);
}
A = As[rank];
x = xs[rank];
} else {
std::cerr << "recv A at " << rank << "\n";
A = receive_matrix(rank, 0, MPI_COMM_WORLD);
std::cerr << "recv x at " << rank << "\n";
x = receive_vector(rank, 0, MPI_COMM_WORLD);
}
// Product vector size is same as local rows of A
std::vector<float> b(A.num_rows());
// get GPU versions
CsrMat<Where::device> Ad(A);
Array<Where::device, float> xd(x);
Array<Where::device, float> bd(b);
// do spmv
dim3 dimBlock(32,8,1);
dim3 dimGrid(100);
spmv<<<dimGrid, dimBlock>>>(bd.view(), Ad.view(), xd.view());
CUDA_RUNTIME(cudaDeviceSynchronize());
MPI_Finalize();
}